Tumor-Associated Immune Cells Hinder Frontline Chemotherapy Drug in Pancreatic Cancer

Researchers have shown how tumor-associated macrophages release compounds that block gemcitabine in the most common type of pancreatic cancer

2:55 PM

Author | Ian Demsky

Doctors looking at screen
Costas Lyssiotis, Ph.D., and Christopher Halbrook, Ph.D.

A frontline chemotherapy drug given to patients with pancreatic cancer is made less effective because similar compounds released by tumor-associated immune cells block the drug's action, research led by the University of Michigan Rogel Cancer Center found.

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily audio updates on iTunesGoogle Play and Stitcher.

The chemotherapy drug gemcitabine is an anti-metabolite. It's similar to normal metabolites taken up by the cell, but once inside it kills the cell by disrupting its functions — like a Trojan horse. In pancreatic cancer, tumor immune cells release metabolites that are nearly identical to gemcitabine, and these block the activity of the drug in malignant cells, the researchers found.

Why does gemcitabine work pretty well in some cancers but not in pancreatic cancer, that's the big question my lab was trying to answer,
Costas Lyssiotis, Ph.D.

These insights could be used to predict which patients will respond to gemcitabine therapy, as well as shed new light on other types of cancer where immune cells may be playing an important role in resistance to chemotherapy, according to findings published recently in Cell Metabolism.

"Why does gemcitabine work pretty well in some cancers but not in pancreatic cancer, that's the big question my lab was trying to answer," says study senior author
Costas Lyssiotis, Ph.D., assistant professor of Molecular and Integrative Physiology at the U-M Medical School.

Pancreatic cancer is one of the most lethal types of cancer. It's typically aggressive and doesn't respond well to traditional chemotherapy and radiation treatments. And although progress has been made in recent years, five-year survival rates are still in the single digits.

 "Malignant cells often only make up about 10 percent of a tumor," says study first author Christopher J. Halbrook, Ph.D., a postdoctoral researcher in the Lyssiotis lab. "The remaining 90 percent are other types of cells that support the growth of that tumor — like structural cells, vasculature, and immune cells. Our work has been focused on the interaction between malignant cells and immune cells."

Tumor-associated immune cells release a compound that hinders chemotherapy. (Habrook et al./Cell Metabolism).

Large contingents of immune cells known as macrophages are often found in pancreatic ductal adenocarcinoma, the most prevalent type of pancreatic cancer. And while macrophages were known to prevent the activity of gemcitabine chemotherapy, exactly how the immune cells did this had been unclear.

Lyssiotis and his collaborators at U-M and in Scotland investigated the interaction between malignant cells and tumor-associated macrophages, finding the immune cells released a host of compounds known as pyrimidines, which are metabolized by the malignant cells.

One of these compounds, deoxycytidine, has a chemical structure that's very similar to gemcitabine and directly blocks the activity of the chemotherapy drug in the malignant cells.

"Deoxycytidine basically outcompetes gemcitabine," Lyssiotis says, adding that the physiological reason underlying the immune cells' release of the pyrimidines is still unclear.

MORE FROM THE LAB: Subscribe to our weekly newsletter

After genetically and pharmacologically depleting the number of tumor-associated macrophages in mouse models, the team showed that the tumors were less resistant to gemcitabine — offering a clue toward potentially making patients' tumors more responsive to chemotherapy.

The researchers also looked at data from patients with pancreatic cancer and found that patients whose tumors had fewer macrophages had responded better to treatment.

"When we think of personalized medicine, we often think about what's going inside of the malignant cells, what specific genetic mutations a patient's tumor may have," Lyssiotis says. "In our case, we're thinking about, 'What does this tumor look like as a whole? What does its ecosystem of cells look like?' And hopefully we can use an understanding of the interaction between different types of cells to develop new approaches to treatment."


More Articles About: Lab Report Pancreatic cancer Cancer Research Cancer Diagnosis Cancer: Cancer Types
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories colorful cells floating pink teal orange and green black vague background
Health Lab
Improving access to HPV testing
A new initiative is aiming to raise awareness and improve accessibility to HPV testing. Diane Harper, M.D., M.P.H. M.S., discusses it and the importance of screening for HPV.
different cars from helicopter view on highways intersecting going all different ways seeing greenery and roads
Health Lab
Pediatric brain tumors rely on different metabolic “route” to fuel treatment resistance
Researchers at the University of Michigan Health Rogel Cancer Center are one step closer to understanding how pediatric DIPG tumors work.
cancer cell blue yellow
Health Lab
Accessibility issues in cancer care
Researchers at the University of Michigan are finding that many patients may be encountering significant barriers to cancer care, even from their first phone call to a clinic.
white blood cell with some blue on black background artistic looking
Health Lab
White blood cell “nets” could be early warning sign of major immunotherapy complication
When white blood cells, meant to protect the body from infection, are overly activated, they eject their DNA into nets, further disrupting the immune system and making patients more likely to develop a potentially severe reaction to immunotherapy.
woman putting something in vial in lab coat and purple gloves, glasses and mask in clinical looking area
Health Lab
Altering cancer treatment dosing could reduce climate impact, study finds
Changing how often a popular cancer therapy is delivered would reduce greenhouse gas emissions and improve environmental impact without decreasing cancer survival, according to a new analysis from researchers at the University of Michigan Health Rogel Cancer Center.
cancer cell blue yellow
Health Lab
Widening inequality seen where cancer clinical trials are available
The availability of clinical trials of new treatments for cancer varies greatly by geography, and a new study shows more socially vulnerable areas have far fewer.