Skin’s Immune ‘Alarm’ May Explain Light-Induced Rashes in Lupus Patients

U-M researchers are studying an overabundant signaling protein tied to UV light sensitivity in patients with lupus.

7:00 AM

Author | Kelly Malcom

Imagine being so sensitive to the sun's rays that you're forced to either slather yourself in sunscreen or risk a rash so severe it could leave permanent scars.

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily audio updates on iTunes, Google Play and Stitcher.

This is the unfortunate reality for many people with lupus. Up to 60 percent of patients with the autoimmune disease have sensitivity to ultraviolet light, a condition called photosensitivity. It can result in skin inflammation or a flare-up of a wide range of lupus symptoms, such as joint pain and fatigue.

For some patients, even the light of a photocopier is enough to trigger the disease's characteristic angry red rash.

"Studies on the photosensitivity aspect of lupus have shown a huge correlation between how photosensitive someone is and their quality of life," says J. Michelle Kahlenberg, M.D., Ph.D., assistant professor of internal medicine in the division of rheumatology at Michigan Medicine.

She and a multidisciplinary team of researchers are attempting to unlock the mystery behind this reaction. Their findings are published online in Annals of the Rheumatic Diseases.

Studies on the photosensitivity aspect of lupus have shown a huge correlation between how photosensitive someone is and their quality of life.
J. Michelle Kahlenberg, M.D., Ph.D.

Their work builds on a decade's worth of research examining the link between proteins called interferons and lupus. Interferons are released by cells in response to an invasion. Typically triggered by viruses, they also can be activated by bacteria and other external threats.

Interferons alarm other cells to bolster their defenses. The function is present in all people.

"Interferons are notoriously hard to measure, but we've known they are elevated in most lupus patients," Kahlenberg says. "In this experiment, we set out to see which ones were in the skin."

Gene editing offers insight

When the researchers compared skin cells from patients with lupus and people with healthy skin, lupus epidermal skin cells called keratinocytes the keratin-producing cells that make up the top layer of skin showed a significant increase in interferon kappa (IFN-κ).

Next, they generated keratinocytes without IFN-κ using CRISPR/Cas9 technology, which functions like a pair of genetic scissors, to remove the gene encoding the interferon. They then compared these skin cells with another set designed to overexpress IFN-κ.

MORE FROM THE LAB: Subscribe to our weekly newsletter

"We found out that all type 1 IFN signaling goes down in basal keratinocytes when you delete, or knock out, the IFN-κ gene using CRISPR/Cas9; we also observed that IFN-κ knockout keratinocytes are unaffected by UV light," says Mrinal Sarkar, Ph.D., a research investigator with the department of dermatology at U-M.

Conversely, cells overexpressing IFN-κ died when exposed to UV light.

"We think that the probable main function of IFN-κ in normal, healthy skin is to fight off viral infections, such as HPV. But in lupus, this whole system is out of sync and overactive," explains Johann Gudjonsson, M.D., Ph.D., associate professor of dermatology.

Research moving forward

Even without exposure to UV light, lupus skin had higher baseline levels of IFN-κ. This overabundance appears to amplify the inflammatory response and cell death.

The team is trying to uncover why IFN-κ is elevated in the skin of patients with lupus and how it regulates death in keratinocytes. They also wonder if similar mechanisms are at play in other diseases with photosensitivity as a feature, such as dermatomyositis.

SEE ALSO: Investigating Kidney Biomarkers to Track Lupus

What makes this discovery particularly exciting, the team notes, is that drugs recently approved by the FDA and currently prescribed for rheumatoid arthritis can block interferons.

Using the drug baricitinib, the U-M researchers blocked interferon signaling and made lupus skin cells look like those in normal, healthy skin. Baricitinib is currently in drug trials for lupus, but not for photosensitivity.

"I'm excited to see this go from bench to bedside," Kahlenberg says. "It may actually happen that some of our work helps to push this forward."

She was also recently awarded the first Taubman Institute Innovative Project grant with her colleague, Johann E. Gudjonsson, M.D., Ph.D. for their study: Personalized medicine through integration of immune phenotypes in autoimmune skin diseases. The study investigates immune responses in the skin and blood of lupus and psoriasis patient and how disease flares and medications may alter these responses.

The team will analyze tissues at the cellular level, genetic level (using DNA profiling) and the molecular level (using mass cytometry imaging and single cell RNA sequencing) to develop a full picture of immune dysfunction in these patient groups. The five-year study hopes to lead to more targeted, personalized therapies in autoimmune diseases.

The work was in part supported by the University of Michigan Babcock Endowment Fund, the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R03AR066337, K08AR063668, K08-AR060802, T32AR007080, R01-AR071384 and R01-AR069071, the A. Alfred Taubman Medical Research Institute Parfet Emerging Scholar Award and Kenneth and Frances Eisenberg Emerging Scholar Award, Doris Duke Charitable Foundation Grant #2013106 and the Rheumatology Research Foundation Career Development K Supplement Award.

This article was originally published on July 25, 2018, and was updated on January 25, 2019.


More Articles About: Lab Report Lupus Basic Science and Laboratory Research Rheumatology
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Jianping Fu, Ph.D., Professor of Mechanical Engineering at the University of Michigan and the corresponding author of the paper being published at Nature discusses his team’s work in their lab with Jeyoon Bok, Ph.D. candidate at the Department of Mechanical Engineering.
Health Lab
Human stem cells coaxed to mimic the very early central nervous system
The first organized stem cell culture model that resembles all three sections of the embryonic brain and spinal cord could shed light on developmental brain diseases
Graphic showing pills, a heart and brain with data on aspirin use
Health Lab
Aspirin can prevent a second heart attack or stroke, but many don’t use it
Washington University School of Medicine and Michigan Medicine researchers found that fewer than half of people who have experienced a heart attack or stroke use aspirin to prevent a second one.
Illustration of a microscope
Health Lab
Hippo signaling pathway gives new insight into systemic sclerosis
Study focuses on Hippo signaling pathway as critical link between fibrosis, vascular dysfunction, and sex bias in systemic sclerosis
Headshot of Anne Draelos
Research News
U-M's Anne Draelos named a 2024 Sloan Research Fellow in neuroscience
Anne Draelos, Ph.D., Assistant Professor of Biomedical Engineering and Computational Medicine & Bioinformatics, has been named a 2024 Sloan Research Fellow in Neuroscience.
Woman sleeping on a couch holds her stomach, as if in pain
Health Lab
Long COVID-19 is linked to chronic pain conditions
Therapies for pain conditions like fibromyalgia provide clues for helping those with long COVID-19
vial of blood in container lab blue yellow grainy graphic
Health Lab
Unveiling potential diagnostic, treatment target for APS-related thrombocytopenia
Researchers at the University of Michigan Health have unveiled a new mechanism that drives thrombocytopenia and a potential clinically actionable biomarker for antiphospholipid syndrome associated thrombocytopenia.