Modifying Writer and Eraser Enzymes Reverses Neurodevelopmental Disorders in Mice

Mouse models of two rare brain development disorders see their conditions corrected through manipulation of histone H3K4me.

2:36 PM

Author | Kelly Malcom

drawing of gene on notebook paper
Image by Stephanie King.

Normal brain development occurs in part through a process called histone methylation, which controls the expression of the genetic code written in DNA. One of these histones, called H3K4me, is found extensively throughout the brains of mammals, including humans. Errors in the methylation of H3K4me can cause neurodevelopmental disorders and intellectual disabilities. In a new study, Shigeki Iwase, Ph.D., Natalie Tronson, Ph.D. and their team have shown how these errors—and their corresponding memory and behavioral deficits— may be corrected in an animal.

"Mutations in many H3K4me enzymes are responsible for neurodevelopmental disorders. Yet, we do very little about how these mutations lead to brain malfunctions," says Iwase, associate professor in the U-M Medical School's department of human genetics. "Determining the functional relationship between H3K4me enzymes, therefore, is an essential first step for therapeutics of these conditions."

By manipulating so-called writer and eraser enzymes that control the methylation of H3K4me, they for the first time, reversed abnormal brain cell structure and aggressive behaviors in mouse models of two rare neurodevelopmental syndromes, Wiedemann-Steiner Syndrome and Claes-Jensen syndrome. The findings hint at the potential therapeutic promise of altering enzymes that control histone methylation in humans.

Paper cited: "Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation," Communications BiologyDOI: 10.1038/s42003-020-1001-6


More Articles About: Lab Notes Basic Science and Laboratory Research Developmental Delay Retardation Genetic Disorders All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories stethoscope
Health Lab
Too much iron can cause big problems for the immune system
A study builds on previous work that found depriving T cells of iron prevented cells from proliferating. The current study, published in PNAS, found that excess iron is just as problematic.
uti written on empty roll of toliet paper on a toliet paper holder with hot pink background
Health Lab
How E. coli get the power to cause urinary tract infections
Research published in PNAS examines how the bacteria Escherichia coli, or E. coli—responsible for most UTIs—is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.
woman holding face looking stressed on white couch in white shirt dark blue pants
Health Lab
Health costs top older adults’ list of concerns for people their age, poll finds
People over 50 of all backgrounds say they’re most concerned about various kinds of health costs affecting people their age, including insurance, prescriptions, medical care, dental care and home or longterm care.
kidneys blue yellow
Health Lab
Why personalized medicine is important in rare kidney disease
Building a comprehensive human kidney cell and tissue catalog could help develop more treatments for kidney disease.
Scientific illustration of gliobastoma cells in the brain
Health Lab
Path forward for glioblastoma treatment
Experts in brain cancer outline current discoveries and offer a path of hope for glioblastoma treatment
Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.