Gut Microbiome Puts the Brakes on Iron Absorption

The body’s resident bacteria play a major role in divvying out iron—a fact that could be used to treat iron-related disorders.

11:15 AM

Author | Kelly Malcom

iron met malcolm image

 

While most people in developed nations may not think much about dietary iron, almost a quarter of the global population lacks this essential nutrient.

Iron plays a critical role in providing oxygen to the body's cells. Too little iron can lead to iron deficiency anemia and symptoms such as fatigue, heart palpitations and shortness of breath. Too much can lead to iron overload and a disease called hemochromatosis, which can cause heart failure.

Michigan Medicine researchers have unlocked a mechanism behind how the body decides whether or not to absorb iron from the food--one that involves the trillions of bacteria in our guts known as the gut microbiome.

"If you have a low-iron diet, the body absorbs more of it in an adaptive mechanism to get enough," says Nupur Das, Ph.D., a research investigator in the Department of Molecular and Integrative Physiology. "Our gut microbiomes are also dependent on iron. Different microbes have different iron needs to survive."  

He along with Yatrik Shah, Ph.D., a professor in the Department of Internal Medicine and Molecular and Integrative Physiology, and their research team have shown that the bacteria in the gut actively compete with the human body for iron from the diet. They describe their work in a new paper in Cell Metabolism.

MORE FROM THE LAB: Subscribe to our weekly newsletter

Using mice, they found that certain bacteria in the gut produce metabolites that inhibit the transcription factor HIF-2 in the intestine. By doing so, the gut bacteria block iron absorption by the body.

"During a pilot experiment, we found that germ-free mice [mice specially bred to have no bacteria anywhere in their systems] were resistant to anemia," says Shah, senior author on the paper. "The easiest explanation is that you've gotten rid of a trillion bacteria and they no longer need iron. But interestingly, we saw that the iron absorptive mechanisms were all highly upregulated in the absence of microbiota."

In other words, without the gut bacteria there to dial back iron absorption, the body's systems for taking iron in were turned all the way up. To confirm this observation, the group administered antibiotics to normal mice. They found that mice treated with antibiotics also saw an increase in iron absorption. Further, germ-free mice that had gut bacteria transplanted into their systems had reduced iron levels.

What these intriguing findings suggest is an unconventional treatment for iron-related disorders. "In an anemic patient, you could help by getting rid of the gut microbiota. Conversely, reintroducing the microbial metabolites that inhibited the absorptive system would reduce iron absorption in patients that have iron overload disorders," says Shah.

Das and Shah note that the antibiotics are inexpensive, readily available and could hold promise for the more than 1.5 billion people globally with iron-deficiency anemia. "In the anemic scenario, some places of the world can't afford food with enough iron. These findings suggest we can still improve anemia even when faced with a low iron diet," says Das.

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily updates on iTunesGoogle Play and Stitcher.

Furthermore, they note that there are gut specific antibiotics, reducing the risk of antibiotic resistance and can be administered to lower but not completely eliminate beneficial gut microbiota. 

Says Shah, "We feel that decreasing the microbial burden for a short time would outweigh some of the consequences as anemia, especially in developing nations, can be quite crippling for individuals."

Paper Cited:  Yatrik M. Shah et al. "Microbial metabolite signaling is required for systemic iron homeostasis", Cell Metabolism. DOI: 10.1016/j.cmet.2019.10.005


More Articles About: Lab Report Basic Science and Laboratory Research Anemia Nutrition All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories chess pieces yellow background one red piece on right and yellow on left weighing the balance beam down
Health Lab
Interplay between key proteins could serve as a target for cancer treatment
University of Michigan researchers have identified that the balance between two proteins—STAT3 and STAT5—is important for making tumors vulnerable to immune checkpoint therapy, and targeting STAT3 degradation is a potential novel cancer immunotherapy strategy.
red cancer cell on red background
Health Lab
Researchers identify roles of key genes in colon cancer development
Researchers used mouse models and studies of colorectal cancer tissues to show that loss of SOX9 gene promotes tumor progression and the pathway it regulates can be a potential target for future treatments.
two hearts next to each other with small figure people inside and out of it
Health Lab
How neutrophil calprotectin unmasks future atherosclerotic heart disease risk
The immune system is showing evidence of playing a roll in the emergence of atherosclerotic cardiovascular disease. A rush of neutrophils, or immune cells to the site could be an explanation for how this condition forms as well as how to prevent this heart disease in the future.
lungs beating pink and orange and yellow and white circles floating around
Health Lab
Protein found in rheumatic diseases causes inflammation in COVID-19 patients
Research on the inflammatory mediator called sCD13 has identified this molecule and its receptors as new targets for treatment of autoimmune rheumatic diseases. The data suggests that sCD13 may also be of great importance in severe complications of COVID-19.
black circle with sparkle looking dots moving
Health Lab
Improved model system allows researchers to study embryo development
Research improves upon a popular experimental model revealing more of the inner workings of a critical period during the formation of an embryo.
red cells stacked ontop of darker red background
Health Lab
Medicaid unwinding linked to opioid addiction treatment disruptions
Buprenorphine prescription interruptions were most common in states that had the biggest coverage drops during Medicaid unwinding; study has importance for future Medicaid policy.