This gross mixture has big benefits for the study of bacteria

Growing bacteria on agar mixed with organs is an efficient and effective way to study infectious pathogens

3:04 PM

Author | Kelly Malcom

sketched out bacteria in a dish yellow and blue colors of U-M
Credit: Jacob Dwyer, Justine Ross, Michigan Medicine

Animal models are a necessary research tool for understanding how diseases develop and how therapies work in biological systems and can be credited for breakthroughs ranging from effective antibiotics to the COVID vaccines.

The responsible and judicious use of animal models is prioritized by research institutions around the world and a unique research protocol developed by Melanie Pearson, Ph.D., of the Department of Microbiology & Immunology, and her team at University of Michigan Medical School is garnering widespread interest among microbiologists.

In a recent paper in the journal Infection and Immunity, her group describes a product called organ agar that could be deployed to more efficiently screen bacteria that cause urinary tract infections.

Agar is a gelatinous product made of seaweed routinely used in laboratories to grow colonies of bacteria in petri dishes.

Pearson discovered that creating a mixture composed of the agar plus human urine and the organ her team wanted to study, specifically the bladder and kidneys, enabled their team to screen more than 1,700 mutants of the UTI-causing bacteria Proteus mirabilis using a quarter of the mice typically required.

Pearson explains that in a classic mouse study of a urinary tract infection, mutated bacteria—bacteria that are missing individual genes— are introduced into an animal’s bladder and then the dominant strains assessed to determine what bacterial genes are important for infection. Knowing this could enable researchers to target specific variants for drug development, for example.

The use of organ agar has multiple potential benefits, explains Pearson.

For one, it can help microbiologists get around what is known as the bottleneck problem.

In a living system, only a certain number of mutants are able to gain a foothold, with the rest lost at random.

When Pearson tried the screening method using organ agar, her team found that the dominant bacteria reproduced those that were dominant in a live animal.

What’s more, bacteria that did not do well on organ agar also did not do well in a live animal.

Furthermore, organ agar could enable researchers without access to animal models to create physiologically relevant models of infection or colonization and allow for more efficient screening of bacterial and other microorganism candidates for further study.

Paper cited: “Organ agar serves as physiologically relevant alternative for in vivo bacterial colonization,” Infection and Immunity. DOI: 10.1128/iai.00355-23.


More Articles About: infectious disease All Research Topics Community Health Hospitals & Centers Vaccines and Immunizations
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Mott Poll teens and caffeine
Health Lab
Does your teen consume too much caffeine?
A quarter of parents report that caffeine is basically part of their teen’s daily life, according to a national poll.
pills floating blue pink dark background physician in middle looking at chart white coat scrubs
Health Lab
Better medical record-keeping needed to fight antibiotic overuse, studies suggest
Efforts to reduce overuse of antibiotics may be hampered by incomplete medical records that don’t show the full reasons for prescriptions.
zoom screens with 7 different backgrounds and doctor silhouettes outlined in each
Health Lab
The doctor is in…. but what’s behind them?
A study reveals that what a doctor has behind them during a telehealth visit can make a difference in how the patient feels about them and their care.
surgery gloves passing tool blue and yellow
Health Lab
A universal heparin reversal drug is shown effective in mice
The newest version of the heparin reversal drug, described in a recent issue of Advanced Healthcare Materials, adjusted the number of protons bound to it, making the molecule less positive so it would preferentially bind to the highly negative heparin, resulting in a much safer drug.
blue gloves in hospital hanging IV bag
Health Lab
Commonly used antibiotic brings more complications, death in the sickest patients
In emergency rooms and intensive care units across the country, clinicians make split-second decisions about which antibiotics to give a patient when a life threatening infection is suspected. Now, a study reveals that these decisions may have unintended consequences for patient outcomes.
A graphic of the brain
News Release
University of Michigan researchers receive Javits Award for work on stroke health disparities in Mexican Americans
Two University of Michigan researchers have received the Javits Neuroscience Investigator Award from the National Institute of Neurological Disorders and Stroke for their work on stroke health disparities in Mexican Americans. The $5 million in funding allows the Texas-based research project to reach a 32-year milestone and expand to 35-to-44-year-olds whose incidence of stroke is increasing.