Clinicians could be fooled by biased AI, despite explanations

U-M study shows accurate AI models improved diagnostic decisions, but biased models led to serious declines

12:40 PM

Authors | Kelly Malcom | Derek Smith

x-ray rib lung purple

Artificial intelligence (AI) models in healthcare are a double-edged sword, with models improving diagnostic decisions for some demographics but worsening decisions for others when the model has absorbed biased medical data. 

Given the very real life and death risks of clinical decision making, researchers and policymakers are taking steps to ensure AI models are safe, secure, and trustworthy—and that their use would lead to improved outcomes. 

The U.S. Food and Drug Administration has oversight of software powered by AI, and machine learning used in healthcare and has issued guidance for developers, including a call to make the logic used by AI models to be transparent or explainable so that clinicians can review the underlying reasoning.

However, a new study in JAMA finds that even when provided with AI explanations, clinicians can be fooled by biased AI models.

“The problem is that the clinician has to understand what the explanation is communicating and the explanation itself,” said first author Sarah Jabbour, a Ph.D. candidate in computer science and engineering in the College of Engineering.

The University of Michigan team studied AI models and AI explanations in patients with acute respiratory failure. 

“Determining why a patient has respiratory failure can be difficult. In our study, we found clinicians baseline diagnostic accuracy to be around 73 percent,” said Michael Sjoding, M.D., associate professor of internal medicine at the University of Michigan Medical School, a co-senior author on the study.

“During the normal diagnostic process, we think about a patient’s history, lab tests and imaging results, and try to synthesize this information and come up with a diagnosis. It makes sense that a model could help improve accuracy.”

Jabbour, Sjoding, co-senior author Jenna Wiens, Ph.D., associate professor of computer science and engineering and their multidisciplinary team designed a study to evaluate the diagnostic accuracy of 457 hospitalist physicians, nurse practitioners, and physician assistants with and without assistance from an AI model. 

Each clinician was asked to make treatment recommendations based on their diagnosis. Half were randomized to receive an AI explanation with the AI model decision, while the other half received only the AI decision with no explanation.

Clinicians were given real clinical vignettes of patients with respiratory failure as well as a rating from the AI model on whether the patient had pneumonia, heart failure, or chronic obstructive pulmonary disease (COPD). In the half randomized to see explanations, the clinician was provided a heatmap, or visual representation, of where the AI model was looking in the chest radiograph, which served as the basis for the diagnosis.

The team found that clinicians who were presented with an AI model trained to make reasonably accurate predictions, but without explanations, had their own accuracy increase by 2.9 percentage points. When provided an explanation, their accuracy increased by 4.4 percentage points. 

However, to test whether an explanation could enable clinicians to recognize when an AI model is clearly biased or incorrect, the team also presented clinicians with models intentionally trained to be biased— for example, a model predicting a high likelihood of pneumonia if the patient was 80 years or older

“AI models are susceptible to shortcuts, or spurious correlations in the training data. Given a dataset in which women are underdiagnosed with heart failure, the model could pick up on an association between being female and being at lower risk for heart failure,” explained Wiens. 

“If clinicians then rely on such a model, it could amplify existing bias. If explanations could help clinicians identify incorrect model reasoning this could help mitigate the risks.”

When clinicians were shown the biased AI model, however, it decreased their accuracy by 11.3 percentage points and explanations which explicitly highlighted that the AI was looking at non-relevant information (such as low bone density in patients over 80) did not help them recover from this serious decline in performance. 

The observed decline in performance aligns with previous studies that find users may be deceived by models, noted the team.

 “There’s still a lot to be done to develop better explanation tools so that we can better communicate to clinicians why a model is making specific decisions in a way that they can understand. It’s going to take a lot of discussion with experts across disciplines,” Jabbour said.

The team hopes this study will spur more research into the safe implementation of AI-based models in healthcare across all populations and for medical education surrounding AI and bias. 

David Fouhey, Ph.D.; Stephanie Shepard, Ph.D.; Thomas S. Valley, M.D.; Ella A. Kazerooni, M.D., MS; and Nikola Banovic, Ph.D.

This work was supported by grant R01 HL158626 from the National Heart, Lung, and Blood Institute (NHLBI).

Paper cited: “Measuring the Impact of AI in the Diagnosis of Hospitalized Patients: A Randomized Survey Vignette Multicenter Study.” JAMA, DOI:10.1001/jama.2023.22295

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation.

Sign up for the Health Lab Podcast: Add us on SpotifyApple Podcasts or wherever you get you listen to your favorite shows.


More Articles About: All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories orange cells floating squiggly lines coming out of it with blurred blue and purple colors
Health Lab
Clinically deployed AI guidance for preventing C. difficile spread
AI guidance for clinicians aimed at reducing the spread of C.diff was deployed for the first time in a hospital setting, according to a University of Michigan-led study.
outline drawing of pancreas on beige screen with green orange yellow and pink
Health Lab
Avoiding recovery delays with hospitalized pancreatitis
Acute pancreatitis is among the most common gastrointestinal conditions requiring inpatient hospital care in the United States. Balancing the signaling of the interleukin-22 protein and interleukin-22 binding protein is crucial to recovery from acute and chronic pancreatitis.
ultrasound on skin
Health Lab
Simple muscle ultrasound may detect early prediabetes
A simple ultrasound of a patient’s thigh or shoulder muscle may detect insulin resistance before it progresses to type 2 diabetes or even prediabetes. In a study, Michigan Medicine researchers performed muscle ultrasounds on 25 patients who were also evaluated for insulin resistance.
algae green spread all over lake by forest edge from high view
Health Lab
Living near harmful algal blooms reduces life expectancy with ALS
Living close to cyanobacterial harmful algal blooms — which are present nationwide but are more common in coastal and Great Lake states — heightens the rate of dying from amyotrophic lateral sclerosis, or ALS, a study suggests.
teen by self in room listening to music and family with young kid eating out
Health Lab
Many parents struggle letting teens have independence on family vacations
One in five parents say they’ve never allowed their teen to be away from them during a trip.
purple white
Health Lab
Study defines key driver of aggressive ovarian cancer
A study explains the genetic underpinnings of a rare and aggressive form of ovarian cancer – and offers a potential pathway for new treatments.