Brain’s Ability to Rewire Itself is Connected to Gene Expression

New technique provides insight into the role of genes in brain plasticity and cognitive disorders.

11:06 AM

Author | Kelly Malcom

Drawing of a gene
Image by Stephanie King

From birth, the normal human brain rewires itself in response to sensory stimulation from the outside world. To put it simply, it does this by strengthening the connections between certain brain cells through a junction called a synapse. The brain's ability to change in this way is known as synaptic plasticity.

With certain cognitive disorders, like autism and Alzheimer's disease, this rewiring process is disordered. Shigeki Iwase, Ph.D., associate professor of human genetics, and his team have been attempting to understand why, using a gene called RAI1. The genetic deletion of RAI1 causes Smith Magenis Syndrome, a neurodevelopmental disorder characterized with autistic behavior and sleep disturbances.

In a new paper published in Cell Reports, the team describes how they developed a new experimental approach for monitoring gene expression across the genome in neurons while they are in the process of rewiring. "Using this method, we found that synaptic activity can change the expression of many more genes than we previously thought," says Iwase.

The new method also enabled them to discover that RAI1 plays a critical role in the gene expression underlying synaptic plasticity. In collaboration with Michael Sutton, Ph.D., professor of molecular and integrative physiology, and his team, they found evidence that neurons lacking RAI1 have impaired capability to rewire upon sensory inputs.

Says Iwase, "Our new method can be a powerful tool to determine the molecular mechanisms of how normal and diseased neuronal networks integrate environmental information, change gene expression, and ultimately generate our behavior, and identify potential drug targets for relevant brain diseases."

Paper cited: "RAI1 Regulates Activity-Dependent Nascent Transcription and Synaptic Scaling," Cell Reports. DOI: 10.1016/j.celrep.2020.108002


More Articles About: Lab Notes Basic Science and Laboratory Research Genetic Disorders All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories drawing of gene on notebook paper
Health Lab
Modifying Writer and Eraser Enzymes Reverses Neurodevelopmental Disorders in Mice
Mouse models of two rare brain development disorders see their conditions corrected through manipulation of histone H3K4me.
Scientific illustration of gliobastoma cells in the brain
Health Lab
Path forward for glioblastoma treatment
Experts in brain cancer outline current discoveries and offer a path of hope for glioblastoma treatment
Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.
Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.
Florescent image of a human ovarian follicle
Health Lab
Spatial atlas of the human ovary with cell-level resolution will bolster reproductive research
New map of the ovary provides a deeper understanding of how oocytes interact with the surrounding cells during the normal maturation process, and how the function of the follicles may break down in aging or fertility related diseases.
A CT scan of healthy lungs
Health Lab
Study reveals potential to reverse lung fibrosis using the body’s own healing technique
A recent U-M study uncovers a pathway utilized during normal wound healing that has the potential to reverse idiopathic pulmonary fibrosis.