CAR-T on a Mission

Photo by Leisa Thompson Photography

One of the many exciting things about working at an academic medical center is the constant exposure to the research discoveries and technologies that ultimately become translatable to patient care applications. The great advances in technology and science have fueled so much progress that we now have broad opportunities — in areas like precision health, 3D printing, and artificial intelligence — that demand constant attention and continuing medical education. 

A promising new type of immunotherapy has now emerged: the development of chimeric antigen receptor T cells (CAR-T) to treat the most common form of acute leukemia in children and young adults, and a common form of lymphoma in adults. CAR-T therapy relies on genetically modifying our immune surveillance cells (called T cells) to target proteins on the surface of a patient's own cancer. Once infused, the CAR-T cells begin an immediate search-and-destroy mission, targeting those cancer cells. 

In practice, CAR-T therapy requires isolating T cells from an aliquot of a patient's blood, growing the T cells outside the patient's body, inserting a specific anti-cancer (CAR) gene into the T cells, and then administering the cells to the patient by intravenous infusion. The process to "manufacture" the CAR-T cells routinely takes three to four weeks. What's amazing is that we are using a patient's own T cells to create this anti-tumor product. 

Until recently, CAR-T therapy was limited to multicenter clinical trials, to treat patients with relapsed or refractory hematologic malignancies. In 2017, the FDA approved two CAR-T therapy approaches, one to treat acute lymphoblastic leukemia (ALL) in children and another to treat adults with diffuse large cell lymphoma. The fact that its application was FDA-approved in children before adults, an anomaly in cancer therapeutics, makes this treatment even more exciting. 

At Michigan Medicine, our pediatric and adult hematology/oncology teams — led by Greg Yanik, Challice Bonifant, and Rajen Mody in pediatrics; and Pavan Reddy, John Magenau, and Monalisa Ghosh for adult patients — have been at the forefront of administering this new treatment to patients. Michigan Medicine has now treated 12 patients with CAR-T therapy for ALL, and we remain the only medical center in the state approved to use CAR-T cells for the treatment of refractory ALL. 

With the convergence of technology, engineering, and health care, CAR-T is one of many examples of emerging therapies that give new hope for treating very difficult or otherwise fatal diseases. Likewise, promising and growing data suggest that CAR-T cells could treat adult patients who have a wide variety of blood cancers, including multiple myeloma and several types of lymphomas. At U-M — thanks to our research and academic endeavors, as well as resources across campus — we are uniquely positioned to use and learn from such innovative therapies, and we anticipate helping many more children and young adults in the years ahead. 

David A. Spahlinger, M.D. 
Executive Vice Dean for Clinical Affairs 
President, U-M Health System
Clinical Professor of Internal Medicine 


More Articles About: CAR-T chimeric antigen receptor immunotherapy Cancer (Oncology)
Featured News & Stories two women, one older one younger, looking concerned listening to a provider across from them with back to camera
Health Lab
Many breast cancer survivors don't receive genetic testing, despite being eligible
As cancer treatment and survivorship care relies more on understanding the genetic make up of an individual’s tumor, a study from the University of Michigan Health Rogel Cancer Center finds that many breast cancer survivors who meet criteria for genetic counseling and testing are not receiving it.
Cancer cell microscopic, colored yellow
Health Lab
Researchers find common immune system mechanism between pregnancy, cancer
Researchers find common immune system mechanism between pregnancy, cancer
light lights seen on dark navy screen
Health Lab
Researchers identify novel biomarker linked to renal cancer recurrence
Researchers from the University of Michigan Health Rogel Cancer Center have discovered a biomarker that could help identify which renal cancer patients have a higher risk of recurrence.
colorful cells floating pink teal orange and green black vague background
Health Lab
Improving access to HPV testing
A new initiative is aiming to raise awareness and improve accessibility to HPV testing. Diane Harper, M.D., M.P.H. M.S., discusses it and the importance of screening for HPV.
different cars from helicopter view on highways intersecting going all different ways seeing greenery and roads
Health Lab
Pediatric brain tumors rely on different metabolic “route” to fuel treatment resistance
Researchers at the University of Michigan Health Rogel Cancer Center are one step closer to understanding how pediatric DIPG tumors work.
white blood cell with some blue on black background artistic looking
Health Lab
White blood cell “nets” could be early warning sign of major immunotherapy complication
When white blood cells, meant to protect the body from infection, are overly activated, they eject their DNA into nets, further disrupting the immune system and making patients more likely to develop a potentially severe reaction to immunotherapy.