Ultrasound technology helps destroy liver tumors in rats

Known as histotripsy, the device not only kills cancer cells but also stimulates the immune system as an added defense.

5:00 AM

Author | Jim Lynch

Wire plugs device disc square yellow
Biomedical engineering professor Zhen Xu’s lab is researching how ultrasound technology known as histotripsy can destroy liver tumors. Credit: Marcin Szczepanski

Noninvasive sound technology developed at the University of Michigan breaks down liver tumors in rats, kills cancer cells and spurs the immune system to prevent further spread.

By destroying only 50% to 75% of liver tumor volume, the rats' immune systems were able to clear away the rest, with no evidence of recurrence or metastases in more than 80% of animals.

"Even if we don't target the entire tumor, we can still cause the tumor to regress and also reduce the risk of future metastasis," said Zhen Xu, Ph.D., professor of biomedical engineering at U-M and senior author of the study.

MORE FROM THE LAB: Subscribe to our weekly newsletter

Results also showed the treatment stimulated the rats' immune responses, possibly contributing to the eventual regression of the untargeted portion of the tumor and preventing further spread of the cancer.

The treatment, called histotripsy, noninvasively focuses ultrasound waves to mechanically destroy target tissue with millimeter precision. The relatively new technique is currently being used in a human liver cancer trial in the United States and Europe.

In many clinical situations, the entirety of a cancerous tumor cannot be targeted directly in treatments for reasons that include the mass' size, location or stage. To investigate the effects of partially destroying tumors with sound, this latest study targeted only a portion of each mass, leaving behind a viable intact tumor. It also allowed the team, including researchers at Michigan Medicine and the Ann Arbor VA Hospital, to show the approach's effectiveness under less-than-optimal conditions.

SEE ALSO: Ultrasound technology developed at U-M now clinical trials for liver cancer

"Histotripsy is a promising option that can overcome the limitations of currently available ablation modalities and provide safe and effective noninvasive liver tumor ablation," said Tejaswi Worlikar, M.S., a doctoral student in biomedical engineering. "We hope that our learnings from this study will motivate future preclinical and clinical histotripsy investigations toward the ultimate goal of clinical adoption of histotripsy treatment for liver cancer patients."

Liver cancer ranks among the top 10 causes of cancer related deaths worldwide and in the U.S. Even with multiple treatment options, the prognosis remains poor with five-year survival rates less than 18% in the United States. The high prevalence of tumor recurrence and metastasis after initial treatment highlights the clinical need for improving outcomes of liver cancer.

Even if we don't target the entire tumor, we can still cause the tumor to regress and also reduce the risk of future metastasis.
Zhen Xu, Ph.D.

Where a typical ultrasound uses sound waves to produce images of the body's interior, U-M engineers have pioneered the use of those waves for treatment. And their technique works without the harmful side effects of current approaches such as radiation and chemotherapy.

"Our transducer, designed and built at U-M, delivers high amplitude microsecond-length ultrasound pulses—acoustic cavitation—to focus on the tumor specifically to break it up," Xu said. "Traditional ultrasound devices use lower amplitude pulses for imaging."

The microsecond long pulses from UM's transducer generate microbubbles within the targeted tissues—bubbles that rapidly expand and collapse. These violent but extremely localized mechanical stresses kill cancer cells and break up the tumor's structure.

SEE ALSO: New ultrasonic therapy obliterates tissue without physical contact

Since 2001, Xu's laboratory at U-M has pioneered the use of histotripsy in the fight against cancer, leading to the clinical trial #HOPE4LIVER sponsored by HistoSonics, a U-M spinoff company. More recently, the group's research has produced promising results on histotripsy treatment of brain therapy and immunotherapy.

The study was supported by grants from the National Institutes of Health, Focused Ultrasound Foundation, VA Merit Review, U-M's Forbes Institute for Discovery and Michigan Medicine-Peking University Health Sciences Center Joint Institute for Translational and Clinical Research.

U-M retains a financial interest in HistoSonics, as do a number of researchers who were involved in this project and who helped develop the technology, including Xu, who is a company founder, stockholder and consultant. Each stands to benefit financially from the success of the platform.

This story originally appeared on Michigan News.

Paper cited: "Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model," Cancers. DOI: 10.3390/cancers14071612

Like Podcasts? Add the Michigan Medicine News Break on iTunes or anywhere you listen to podcasts.


More Articles About: Health Tech Cancer Research Liver Cancer Cancer: Help, Diagnosis & Treatment
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Color wires Microsopic Tissue Ultrasonic waves
Health Lab
Ultrasound Technology Developed at U-M Now in Clinical Trials for Liver Cancer
Trial will evaluate the safety and efficacy of histotripsy against liver tumors at eight U.S. sites
blue purple cell dots on white background all over in different patterns
Health Lab
Research finds possible therapies to target oncogenic transcription factors in multiple cancer types
A study from the University of Michigan Health Rogel Cancer Center furthers research that suggests the potential of developing new cancer treatments to target oncogenic transcription factors by indirectly affecting their ability to access enhancer DNA in chromatin.
iv chemo bags
Health Lab
Drug-chemo combo increases cancer treatment efficacy
A study finds giving a fatty acid inhibitor alongside chemotherapy could improve the treatment efficacy for patients with brain metastases from triple negative breast cancer
close up photo of yellow pills lined up on a bright blue matt
Health Lab
New drug candidate blocks resistance to cancer therapies
A team of researchers at the University of Michigan Health Rogel Cancer Center has designed a molecule that impairs signaling mediated by two key drivers of cancer therapy resistance.
two women, one older one younger, looking concerned listening to a provider across from them with back to camera
Health Lab
Many breast cancer survivors don't receive genetic testing, despite being eligible
As cancer treatment and survivorship care relies more on understanding the genetic make up of an individual’s tumor, a study from the University of Michigan Health Rogel Cancer Center finds that many breast cancer survivors who meet criteria for genetic counseling and testing are not receiving it.
light lights seen on dark navy screen
Health Lab
Researchers identify novel biomarker linked to renal cancer recurrence
Researchers from the University of Michigan Health Rogel Cancer Center have discovered a biomarker that could help identify which renal cancer patients have a higher risk of recurrence.