Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains

Investigators hope to advance the research to larger animals

10:45 AM

Author | Noah Fromson

Xray of a stem cell in a mouse brain.
Human neural stem cells were engineered to express green fluorescent protein, then injected into the memory centers of the Alzheimer’s disease mouse brain. The stem cells (green color) are at the site of injection and also traveling through various areas of the brain (background of blue stained cells). Credit: Michigan Medicine

When people think of Alzheimer’s Disease and possible treatment, amyloid — and the accumulation of plaques that invade the cerebral cortex — is often brought up first.  

However, scientists are finding that Alzheimer’s is influenced by many factors, including neuroinflammation and disrupted metabolism. 

By transplanting human neural stem cells, researchers led by Michigan Medicine improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment. 

The results are published in Frontiers in Aging Neuroscience.  

“The beneficial effects of transplanting human neural stem cells within the brains of Alzheimer's Disease mice occurred despite amyloid plaque levels remaining unchanged, which lends further evidence that strategies targeting neuroinflammation may be a promising therapeutic strategy, independent of amyloid plaques,” said lead author Kevin Chen, M.D., clinical assistant professor of neurosurgery and neurology at Michigan Medicine.

“Additionally, the treatment was associated with normalized inflammation in the microglia, which are the innate immune cells of the brain that become activated with Alzheimer’s Disease. As the disease progresses, microglia and their inflammatory signaling is thought to contribute to neuron loss.”

A team at Michigan Medicine’s NeuroNetwork for Emerging Therapies transplanted neural stem cells into the memory centers of transgenic mice that expressed mutations associated with familial Alzheimer’s Disease. They had both the test mice and control mice perform a task called the Morris water maze to assess spatial memory and learning eight weeks after transplant. 

Investigators found that Alzheimer’s disease mice transplanted with stem cells had their learning curves restored to resemble the control mice with normal learning and memory.

Additional testing through spatial transcriptomics — a method to measure gene expression in areas across the brain— revealed over 1,000 differently expressed genes that were normalized in the memory centers of the Alzheimer’s Disease mice after transplantation. 

In analyzing the gene expression changes specifically in microglia, the genetic markers linked to progression of Alzheimer’s Disease were also restored to levels close to control mice. This suggested a reduction in neuroinflammation and disease progression. 

Researchers say the improvements reported after stem cell transplantation must be further studied in mice before advancing to larger animals and, eventually, humans. 

“Our research is incredibly important and continues to support the promise of stem cell therapies in neurodegenerative diseases,” according to senior author Eva Feldman, M.D., Ph.D., director of the ALS Center of Excellence at U-M and James W. Albers Distinguished University Professor at U-M.

“These preclinical studies are the required first step on the road to stem cell therapies.”

Additional authors: Include Mohamed H. Noureldein, Ph.D., Lisa M. McGinley, Ph.D., John M. Hayes, Diana M. Rigan, Jacquelin F. Kwentus, Shayna N. Mason, Faye E. Mendelson, all of University of Michigan, and Masha G. Savelieff, CRED, of University of North Dakota. 

Funding: This research was supported by the National Institutes of Health, The Handleman Emerging Scholar Program, the NeuroNetwork for Emerging Therapies, The Robert E. Nederlander Sr. Program for Alzheimer’s Research, the Sinai Medical Staff Foundation and an Alzheimer's Association grant.

Michigan Research Core: Advanced Genomics Core

Citation: “Human neural stem cells restore spatial memory in a transgenic Alzheimer’s disease mouse model by an immunomodulating mechanism,” Frontiers in Aging Neuroscience. DOI: 10.3389/fnagi.2023.1306004 

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation.

Sign up for the Health Lab Podcast: Add us on SpotifyApple Podcasts or wherever you get you listen to your favorite shows.


More Articles About: Lab Report Neurosurgery & Neurological Procedures Neurological (Brain) Conditions Basic Science and Laboratory Research All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Related
brain stem blue green slice
Health Lab
Monoclonal antibodies preserve stem cells in mouse brains, bring promise for future studies
Using antibodies instead of traditional drugs, stem cells last significantly longer when used in pre-clinical animal models.
Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories brain stem blue green slice
Health Lab
Monoclonal antibodies preserve stem cells in mouse brains, bring promise for future studies
Using antibodies instead of traditional drugs, stem cells last significantly longer when used in pre-clinical animal models.
teal persons body looks like a puzzle red heart top right of shoulder and chest getting placed into missing piece spot
Health Lab
Normothermic perfusion system extends life of organs waiting for transplant
A team of researchers have spent the past eight years looking at better ways to transport organs for donation, specifically hearts, to improve the number of organs that can be used for transplants. They found that using a modified normothermic perfusion system heart preservation was feasible for up to 24 hours.
zoom screens with 7 different backgrounds and doctor silhouettes outlined in each
Health Lab
The doctor is in…. but what’s behind them?
A study reveals that what a doctor has behind them during a telehealth visit can make a difference in how the patient feels about them and their care.
blue gloves in hospital hanging IV bag
Health Lab
Commonly used antibiotic brings more complications, death in the sickest patients
In emergency rooms and intensive care units across the country, clinicians make split-second decisions about which antibiotics to give a patient when a life threatening infection is suspected. Now, a study reveals that these decisions may have unintended consequences for patient outcomes.
yellow grey heart black background
Health Lab
Researchers create human aortic aneurysm model to advance disease understanding, treatment testing
Using human cells in an animal body, a team of researchers has developed a functional model of thoracic aortic aneurysm, creating opportunities for more effective understanding of disease development and treatments for the potentially fatal condition.
A graphic of the brain
News Release
University of Michigan researchers receive Javits Award for work on stroke health disparities in Mexican Americans
Two University of Michigan researchers have received the Javits Neuroscience Investigator Award from the National Institute of Neurological Disorders and Stroke for their work on stroke health disparities in Mexican Americans. The $5 million in funding allows the Texas-based research project to reach a 32-year milestone and expand to 35-to-44-year-olds whose incidence of stroke is increasing.