New Technology Predicts ICU Need for COVID-19 and General Ward Patients

The predictive analytic outperformed two similar technologies.

2:48 PM

Author | Noah Fromson

tye dye color background and drawing of clip board and magnifying glass in white

During yet another surge of COVID-19 cases and hospitalizations, open beds are precious commodities to ICU staff making triage decisions. Early intervention is key to stopping overflow.

In a study published in JMIR: Medical Informatics, researchers at MCIRCC found that their technology outperformed similar products used to predict deterioration for both general ward and COVID-19 patients requiring transfer to intensive care units. The analytic, known as PICTURE (Predicting ICU Transfer and other Unforeseen Events), was significantly more accurate at identifying when patients may need life-saving intervention than the Epic Deterioration Index (EDI), an existing product used for patient deterioration investigation.

PICTURE's machine learning algorithm crunches an array of data, including vital signs, lab results and demographic information to flag patients at the highest risk of decline. The model is able to explain what risk factors influence the prediction, helping clinicians respond faster. 

"The PICTURE model is able to integrate data from the electronic health record and transform it into meaningful predictions based on the patient's risk of experiencing an adverse outcome," says Brandon Cummings, a data scientist at MCIRCC. "This is especially important in the case of COVID-19 patients, who can deteriorate rapidly and unexpectedly. By predicting these events before they occur, PICTURE can give clinicians time to react and stabilize the patient before more drastic measures are required."

The study was the first PubMed indexed paper to report a direct, head-to-head comparison with Epic's EDI for COVID-19 patients. Researchers at MCIRCC are working to test PICTURE in other health systems and develop specialized versions of it for other populations, including rehabilitation and sepsis patients.

"The ability to anticipate these events will be valuable when considering potential future waves of COVID-19 infections," says Kevin Ward, M.D., executive director of MCIRCC. "However, the real value will be the continued use of PICTURE in all hospitalized patients no matter what the situation is."

DISCLOSURES: This study was supported in part by the Michigan Institute for Data Science. "Propelling Original Data Science (PODS) Mini-Grants for COVID-19 Research" award. Andrew Admon, M.D., M.P.H., M.Sc., has received funding from NIH/NHLBI.

CONFLICTS OF INTEREST: Christopher Gillies, Ph.D., Richard P. Medlin, Jr., M.D., M.S.I.S., and Kevin Ward, M.D., have submitted a patent regarding the machine learning methodologies presented in this paper through the University of Michigan's Office of Technology Transfer.

Paper cited: "Predicting Intensive Care Transfers and Other Unforeseen Events: Analytic Model Validation Study and Comparison to Existing Methods," JMIR Medical InformaticsDOI: 10.2196/25066


More Articles About: Lab Notes All Research Topics Covid-19 Future Think Emerging Technologies infectious disease
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories yellow tinted graphic moving with mouth opening seeing down throat red and tonsils in pink in back
Health Lab
Study finds tonsil removal not linked to undesirable weight gain, contrary to popular belief
A trial involving Michigan Medicine researchers has upended a long-held belief that adenotonsillectomies for children with mild sleep-disordered breathing lead to undesirable weight gain.
bone close up of cells inside green bbble with cells inside in yellow brown pink and red orange background
Health Lab
How breast cancer cells survive in bone marrow after remission
A new study from researchers at the University of Michigan and the University of California San Diego has shed light on a previously poorly understood aspect of breast cancer recurrence: how cancer cells survive in bone marrow despite targeted therapies.
patient looking at paper with provider in scrubs blue in clinic
Health Lab
How race impacts patients’ response to cancer immunotherapy
The first large scale analysis finds immune checkpoint inhibitors are equally effective in Black and white patients, with Black patients having fewer side effects.
emergency sign wording in red on brick building
Health Lab
Refining tools that spot risk of violence in young adults in urban ERs may save lives
Half of young adult patients treated in emergency departments in three urban hospitals across the country reported experiencing violence either as a victim or aggressor, including firearm violence, in the six months prior to seeking treatment, according to a University of Michigan study.
Microscope
Health Lab
Nerve damage reduced in prediabetic mice with diet, exercise
A low calorie diet and high intensity exercise can reduce nerve damage in prediabetic mice, according to a Michigan Medicine study.
frozen dial with ice on it with red dial
Health Lab
Enzyme identified as new therapeutic target for “cold” tumors
A study identifies an enzyme as a new therapeutic target for “cold” tumors.