This Neuron Could Have Implications for Effective Diet Drugs

A CALCR cell found in mice may stop feeding without subsequential nauseating effects as well as influence the long term intake of food.

5:00 AM

Author | Jordyn Imhoff

Neuron image

 

Ever eaten something, gotten sick and then didn't want to eat that food again because of how it made you feel? That's because a signal from the gut to the brain produced that sickness, creating a taste aversion.

Conventional wisdom renders there's one circuit in the brain that suppresses eating -- it comes from the stomach and makes you feel sick if you activate it too hard. Eating a portioned meal makes your body happy, though, even while stimulating a signal to the brain to stop eating, according to Michigan Diabetes Research Center's director, Martin Myers Jr., M.D. Ph.D.

"Therefore, there must be a circuit that stops normal feeding without the adverse effects, right?" says Myers. 

Now, a Cell Metabolism study may have discovered this second circuit in mice. Myers, Randy Seeley, Ph.D, the director of the Michigan Nutrition Obesity Research Center, and a team of researchers sought to better understand which part of the brain curbs appetite and which neurons play a role in making mice want to eat or not eat.

The gut-brain signal that suppresses appetite is triggered by a type of neuron, containing calcitonin receptor (CALCR), which lives in a structure of the hindbrain called the medulla. Interestingly enough, these neurons didn't need to be active in the brain for gut sickness to cause an aversive response.

"This suggested we might be able to dissociate the brainstem systems that stop feeding from those that cause nausea," says Myers, whose group found they could genetically activate those CALCR neurons to do just that.

MORE FROM THE LAB: Subscribe to our weekly newsletter

Singling out the responsible neuron 

Since there are neurons that can suppress eating but also cause aversive effects, that must mean there are different types of neurons, or circuits, in the brain that can terminate feeding with differing emotional responses.

When the researchers inactivated the CALCR neurons, they were surprised to make another discovery, which contradicted the idea that the brain only controls short term meal sizes and consumption.

If we could figure out a drug for individuals with obesity that suppresses food intake to produce long term weight loss without the negative side effects, it could absolutely change someone's life.
Martin Myers Jr., M.D. Ph.D.

Turning these neurons "off" didn't only interfere with the suppression of feeding by gut signals, but it also caused an ongoing increase in food intake. The mice became obese, suggesting that the brainstem systems don't only control meal size, but the amount of food consumed long term. This created a predisposition to obesity because of the energy imbalance in the mice (more input than output).

Similarly, activating CALCR neurons decreased the mice's food intake and body weight without any aversive gut effects. In the study, Myers and his team found another neuron, CCK, also decreased food intake and body weight but created an aversive internal response, unlike the CALCR neurons. The difference between the two neurons were found in their circuits.

"CCK activates what we would call a 'yucky circuit'," says Myers. "The neurons activate a certain cell, CGRP cells, which create that sick feeling." Unlike CCK, activated CALCR neurons follow a "yummy circuit", activating non-CGRP cells. 

LISTEN UP: Add the Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily updates on iTunesGoogle Play and Stitcher.

Potential implications in humans

Obesity affects more than one-third of the adult population in developed countries, which can lead to diabetes or other serious, long-term health conditions like heart disease, explains Myers, who is also the director of MDiabetes.

Unfortunately, many diet drugs work, but they make people feel nauseous after they take them. Obesity remains a condition difficult to pharmaceutically manage, since the treatment options have limited therapeutic utility. A drug that turns "on" CALCR and turns off "CGRP" could greatly benefit patients with obesity by suppressing feeding and creating a long term control of food intake and body weight.

"If we could figure out a drug for individuals with obesity that suppresses food intake to produce long term weight loss without the negative side effects, it could absolutely change someone's life," says Myers.

Disclosures: This study was funded by National Institutes of Health and AstraZeneca. Martin Myers Jr., M.D., Ph.D., has been linked to Ionis Pharmaceuticals and Novo Nordisk.

Paper cited: "Calcitonin Receptor Neurons in the Mouse Nucleus Tractus Solitarius Control Energy Balance via the non-Aversive Suppression of Feeding," Cell Metabolism in Cell Press. DOI: 10.1016/j.cmet.2019.12.012.


More Articles About: Lab Report Digestive (GI) Conditions Basic Science and Laboratory Research metabolism Nutrition All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Graphic showing pills, a heart and brain with data on aspirin use
Health Lab
Aspirin can prevent a second heart attack or stroke, but many don’t use it
Washington University School of Medicine and Michigan Medicine researchers found that fewer than half of people who have experienced a heart attack or stroke use aspirin to prevent a second one.
Jianping Fu, Ph.D., Professor of Mechanical Engineering at the University of Michigan and the corresponding author of the paper being published at Nature discusses his team’s work in their lab with Jeyoon Bok, Ph.D. candidate at the Department of Mechanical Engineering.
Health Lab
Human stem cells coaxed to mimic the very early central nervous system
The first organized stem cell culture model that resembles all three sections of the embryonic brain and spinal cord could shed light on developmental brain diseases
Illustration of a microscope
Health Lab
Hippo signaling pathway gives new insight into systemic sclerosis
Study focuses on Hippo signaling pathway as critical link between fibrosis, vascular dysfunction, and sex bias in systemic sclerosis
Headshot of Anne Draelos
Research News
U-M's Anne Draelos named a 2024 Sloan Research Fellow in neuroscience
Anne Draelos, Ph.D., Assistant Professor of Biomedical Engineering and Computational Medicine & Bioinformatics, has been named a 2024 Sloan Research Fellow in Neuroscience.
vial of blood in container lab blue yellow grainy graphic
Health Lab
Unveiling potential diagnostic, treatment target for APS-related thrombocytopenia
Researchers at the University of Michigan Health have unveiled a new mechanism that drives thrombocytopenia and a potential clinically actionable biomarker for antiphospholipid syndrome associated thrombocytopenia.
Animated illustration of weight loss drug container with a heart
Health Lab
Should heart patients consider taking weight loss medications?
Cardiologist shares how weight loss medications may impact cardiovascular health.