Machine learning creates opportunity for new personalized therapies

In cell-line and mouse models of ovarian cancer, researchers developed an interdisciplinary approach to identify metabolic vulnerabilities in certain genes that could be targeted to kill cancer cells.

10:27 AM

Author | Anna Megdell

ovarian cancer tumor under microscope lab note
National Cancer Institute

Researchers at the University of Michigan Rogel Cancer Center have developed a computational platform that can predict new and specific metabolic targets in ovarian cancer, suggesting opportunities to develop personalized therapies for patients that are informed by the genetic makeup of their tumors. The study appeared in Nature Metabolism.

Cancer mutations occur frequently in ovarian cancer, giving cells a growth advantage that contributes to the aggressiveness of the disease. But sometimes deletions of certain genes can occur alongside these mutations and make cells vulnerable to treatment. Still, cancer cells grow so well because paralog genes can compensate for this loss of function and continue to drive tumor formation.

Deepak Nagrath, Ph.D., associate professor of biomedical engineering who led this study, wanted to understand more about these compensatory genes as they relate to metabolism. "When a gene is deleted, metabolic genes, which allow the cancer cells to grow, are also deleted. The theory is that vulnerabilities emerge in the metabolism of cancer cells due to specific genetic alterations."

When genes that regulate metabolic function are deleted, cancer cells essentially rewire their metabolism to come up with a backup plan. Using a method that integrates complex metabolic modeling, machine learning and optimization theory in cell-line and mouse models, the team discovered an unexpected function of an ovarian cancer enzyme, MTHFD2. This was specific to ovarian cancer cells with an impairment to the mitochondria, due to a commonly occurring deletion of UQCR11. This led to a critical imbalance of an essential metabolite, NAD+, within the mitochondria.

The algorithm predicted that MTHFD2 surprisingly reversed its role to provide NAD+ in the cells. This created a vulnerability that could be targeted to selectively kill off the cancer cells while minimally affecting healthy cells.

"Personalized therapies like this are becoming an increasing possibility for improving efficacy of first-line cancer treatments," said research fellow and first author of this study Abhinav Achreja, Ph.D. "There are several approaches to discovering personalized targets for cancer, and several platforms predict targets based on big data analyses. Our platform makes predictions by considering the metabolic functionality and mechanism, increasing the chances of success when translating to the clinic."

Paper cited: "Metabolic collateral lethal target identification reveals MTHFD2 paralogue dependency in ovarian cancer," Nature Metabolism. DOI: 10.1038/s42255-022-00636-3

This research was supported by funding from the National Cancer Institute, the Office of the Director for the National Institutes of Health, the University of Michigan Precision Health Scholars Award, and Forbes Scholar Award from Forbes Institute of Cancer Discovery.


More Articles About: Lab Notes Ovarian Cancer All Research Topics Cancer Research Cancer: Cancer Types
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Animated microscopic image of the glioblastoma's tumor microenvironment
Health Lab
New model of key brain tumor feature could help scientists understand how to develop new treatments
Model shows how oncostreams form and behave in brain tumors – and how to inhibit them
Illustration of scientists and doctors playing basketball in white coats and scrubs
News Release
Four U-M teams selected for virtual tournament of science
U-M researchers' work made the bracket in the 2024 STAT Madness tournament of science, and need public support to advance
cancer cell blue yellow
Health Lab
Less chemoradiation is possible for some cancer patients
Some oropharynx cancer patients may qualify for less radiation treatments, according to a new study from experts at the University of Michigan Health Rogel Cancer Center.
Older woman checks her face in the mirror
Health Lab
Does trying to look younger reduce how much ageism older adults face?
How do ageism and positive age-related experiences differ for people who have tried to look younger, or feel they look younger, than they actually are? A new study examines this and the relationship with health
cancer cell blue yellow
Health Lab
Targeted drug shows promising ability in treating rare head and neck cancers
Experts at Rogel Cancer Center develop and study the impact of a new drug for salivary gland cancers
Jianping Fu, Ph.D., Professor of Mechanical Engineering at the University of Michigan and the corresponding author of the paper being published at Nature discusses his team’s work in their lab with Jeyoon Bok, Ph.D. candidate at the Department of Mechanical Engineering.
Health Lab
Human stem cells coaxed to mimic the very early central nervous system
The first organized stem cell culture model that resembles all three sections of the embryonic brain and spinal cord could shed light on developmental brain diseases