Looking to Mouse, Macaque and Human Germ Cells for New Insight into Infertility

Researchers are comparing the way genes are expressed in thousands of sperm-forming cells in mice, macaques and humans to look for similarities and differences. This comparison provides clues about how sperm has evolved in mammals.

9:59 AM

Author | Kelly Malcom

microscope in lab
Image by Stephanie King.

Figuring out how sperm develops in the testes is critical to understanding male-factor infertility. This process involves both the sperm-forming cells, collectively called germ cells, and supporting cells of the testis known as somatic cells. So far, much of the work around this highly regulated process, called spermatogenesis, has taken place in mice.

A group of U-M and University of Pittsburgh researchers, led by Sue Hammoud, Ph.D., Jun Li Ph.D., and Kyle Orwig Ph.D., and trainees Adrienne Shami, B.S., Xianing Zheng B.S., and Sarah Munyoki B.S., are expanding this body of knowledge by comparing cells from the testes of mice, macaques and humans. Using single-cell RNA sequencing, they analyzed the way genes are expressed in thousands of these sperm-forming cells to look for similarities and differences. This comparison provides clues about how sperm has evolved in mammals.

"From the stem cell building blocks all the way up to mature sperm, there are differences between species in the number, division, and shape of germ cells. While we have learned a great deal from mouse models, sometimes that knowledge simply doesn't translate to humans. As a result, we have a limited understanding of human sperm production, and how things may go wrong to lead to infertility. By simultaneously analyzing thousands of cells throughout this process from different species, we are able to align and directly compare these populations of cells for the first time. In essence, this allows us to begin translating information across species to better understand how sperm are made," says Hammoud.

The findings could help researchers more accurately compare spermatogenesis between animal models and humans, with the ultimate goal of generating in vitro sperm to treat infertility.

"Germ cells can't do it alone; they also require help from the neighboring somatic cells which provide signals and nutrients. While most research has focused on the Sertoli "nurse" cells or testosterone-producing Leydig cells, our study shows that many other underappreciated cell types could provide important input. Learning about these communications will be critical to identify and stimulate human cells in order to produce sperm as a future therapeutic option."

This work was supported by the Michigan Institute for Data Science, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Open Philanthropy

Paper cited: "Single-Cell RNA Sequencing of Human, Macaque, and Mouse Testes Uncovers Conserved and Divergent Features of Mammalian Spermatogenesis." Developmental Cell. DOI: 10.1016/j.devcel.2020.05.010


More Articles About: Lab Notes Basic Science and Laboratory Research Sexual Health All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories uti written on empty roll of toliet paper on a toliet paper holder with hot pink background
Health Lab
How E. coli get the power to cause urinary tract infections
Research published in PNAS examines how the bacteria Escherichia coli, or E. coli—responsible for most UTIs—is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.
woman holding face looking stressed on white couch in white shirt dark blue pants
Health Lab
Health costs top older adults’ list of concerns for people their age, poll finds
People over 50 of all backgrounds say they’re most concerned about various kinds of health costs affecting people their age, including insurance, prescriptions, medical care, dental care and home or longterm care.
kidneys blue yellow
Health Lab
Why personalized medicine is important in rare kidney disease
Building a comprehensive human kidney cell and tissue catalog could help develop more treatments for kidney disease.
Scientific illustration of gliobastoma cells in the brain
Health Lab
Path forward for glioblastoma treatment
Experts in brain cancer outline current discoveries and offer a path of hope for glioblastoma treatment
Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.
Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.