Hippo signaling pathway gives new insight into systemic sclerosis

Study focuses on Hippo signaling pathway as critical link between fibrosis, vascular dysfunction, and sex bias in systemic sclerosis

4:00 PM

Author | Valerie Goodwin

Illustration of a microscope
Credit: Jacob Dwyer, Justine Ross: Michigan Medicine

Systemic sclerosis causes the skin to tighten and harden resulting in a potentially fatal autoimmune condition that is associated with lung fibrosis and kidney disease. 

University of Michigan Health researchers have studied the pathology of systemic sclerosis to understand better the disease and identify key pathways in the disease process that can be targeted therapeutically.

A research team led by University of Michigan Health’s Dinesh Khanna, M.B.B.S., M.Sc.,  professor of rheumatology and Johann Gudjonsson, M.D., Ph.D., professor of dermatology, in collaboration with John Varga, M.D., professor and chief of rheumatology, characterized the major cellular sources of fibrosis in the skin of patients with systemic sclerosis skin, identifying myofibroblasts and a subset of endothelial cells as the major contributors.

The research examined the Hippo signaling pathway, an evolutionarily conserved signaling pathway that plays a complex role in cellular function as a major pathway promoting fibrosis in systemic sclerosis. 

By directly targeting the Hippo signaling pathway, the research team demonstrated a reversal of the pro-fibrotic responses in both myofibroblasts and endothelial cells.

The discovery of this function of the Hippo signaling pathway in systemic sclerosis ties back to prior work that identified a regulator of this pathway as a key driver of sex biased immune responses, providing evidence that may help explain why systemic sclerosis is much more common in women than men.

The findings reported in this paper showed a marked effect from the drug verteporfin, which targets the Hippo signaling pathway, and rapid reversal of the pro-fibrotic phenotype in both myofibroblasts and endothelial cells.

“Verteporfin is approved for treatment of a subtype of macular degeneration suggesting that it could be repurposed towards treating systemic sclerosis,” said Gudjonsson. 

“This work helps shift the focus towards a novel pathway that is a key driver of the major features observed in systemic sclerosis and has the potential to be able to move quickly to testing in clinical trials.”

Furthermore, the researchers believe the unique and comprehensive nature of the data generated in this project may become valuable to other investigators studying systemic sclerosis.

“This is something that Khanna and I aim to move towards creating a proof of concept trial in the near future for to test this theory and further advancements in systemic sclerosis treatment and care,” said Gudjonsson.

Additional authors include: From the University of Michigan: Feiyang Ma Pei-Suen Tsou, Danielle Ochocki, Mehrnaz Gharaee-Kermani, Olesya Plazyo, Xianying Xing, Joseph Kirma, Rachael Wasikowski, William D. Brodie, and J. Michelle Kahlenberg and  Allison C. Billi. 

Disclosure:  There is a patent pending on the use of verteporfin to treat systemic sclerosis.

Michigan Research Core: Advanced Genomics Core

Citation: “Systems-based identification of the Hippo pathways for promoting fibrotic mesenchymal differentiation in systemic sclerosis,” Nature Communications. DOI: doi.org/10.1038

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation.

Sign up for the Health Lab Podcast: Add us on SpotifyApple Podcasts or wherever you get you listen to your favorite shows.

 


More Articles About: Basic Science and Laboratory Research dermatology
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Related
Health Lab
Systemic Scleroderma Treatments: Where Are We Now?
A new and novel outcome measure is being used to determine effectiveness of new scleroderma treatments. Learn how Michigan Medicine is leading the way.  
Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.
Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.
Florescent image of a human ovarian follicle
Health Lab
Spatial atlas of the human ovary with cell-level resolution will bolster reproductive research
New map of the ovary provides a deeper understanding of how oocytes interact with the surrounding cells during the normal maturation process, and how the function of the follicles may break down in aging or fertility related diseases.
A CT scan of healthy lungs
Health Lab
Study reveals potential to reverse lung fibrosis using the body’s own healing technique
A recent U-M study uncovers a pathway utilized during normal wound healing that has the potential to reverse idiopathic pulmonary fibrosis.
Close up image of red blood cells moving through veins
Health Lab
Discovery reveals how this common stinky gas is processed to promote blood vessel growth
A new collaborative study, examined the interaction between three naturally occurring gases — nitric oxide (NO), oxygen, and H2S — during generation of new blood vessels, called angiogenesis.
Researcher in white coat focuses gaze on microbes pictured in a twisting tube illustrating the gut
Health Lab
Fiber, genes and the gut microbiome: Study reveals possible triggers for inflammatory bowel disease
A new U-M study finds a complex interplay between diet, genes, and the gut microbiota that could explain why IBD develops.