High Blood Pressure Linked to Baroreflex in Rats

Animal model observation may reveal new cause of hypertension.

11:09 AM

Author | Kelly Malcom

blood pressure dial with green yellow and red with mouse
Illustration: Stephanie King

High blood pressure: some people take medication to control it while others commit to low salt diets, exercise or yoga to reduce stress. Blood pressure is a primary vital sign, yet, remarkably, just how the body maintains it is still a mystery.

"We've been studying high blood pressure for 100 years and we still have the same ideas," says Daniel Beard, Ph.D., the Carl J. Wiggers Collegiate Professor of Cardiovascular Physiology. In a new paper in JCI Insight, Beard, Feng Gu, Ph.D., from the department of molecular and integrative physiology, and their team describe a newly observed phenomenon in the way blood pressure is maintained in certain rats.

MORE FROM THE LAB: Subscribe to our weekly newsletter

Their discovery comes on the heels of an inquiry into the linkage between stiffened arteries and high blood pressure, known clinically as hypertension. "What happens when you are hypertensive is your arteries get stiffer. But this is thought to be an effect, not a cause," explains Beard. Stiff arteries have a reduced ability to stretch in response to increased pressure. This stretching is controlled by the baroreflex, an automatic neurological response to changes in tension.

"The goal of the reflex is to keep blood pressure steady," says Beard. "If pressure starts dropping, heart rate and cardiac activity go up and if it gets too high, they go down."

The team's hypothesis was that the stiffening in the arteries causes a neural defect, decreasing the ability of the baroreflex to detect arterial stretching and reduce pressure accordingly.

While measuring this effect in rats, they observed that the baroreflex appeared to switch on and off for extended periods of time, up to 5-10 minutes at a time. Spontaneously hypertensive rats—ones who were genetically prone to high blood pressure-- appeared to have more time with the reflex turned off. In fact, Beard's team was able to predict which rats would be hypertensive by the pattern of this baroreflex behavior.

Measuring the dynamic response to blood pressure changes in a human involves tests like a tilt table test, during which a person is strapped to a table that changes positions to measure the cardiovascular response. However, for this study, the team was able to outfit rats with sensors to measure the baroreflex and blood pressure as they went about normal activities. Doing so allowed observation of the on/off phenomenon for the first time.

"First we had to convince ourselves this was real," says Beard. To do so, they compared their animals to rats of a different lineage, ones who developed high blood pressure in response to diet, and saw the same on/off phenomenon. Surprisingly, however, there was no link to blood pressure in these rats. Says Beard, "the baroreflex is contributing to making some animals hypertensive but not others. It may be playing other roles we don't understand."

The team's next goal is to figure out why the baroreflex turns on and off in rats and whether or not the phenomenon exists in people. If so, "it could give us clues about what therapies people may or may not respond to," Beard says.

Paper cited: "Potential role of intermittent functioning of baroreflex in the etiology of hypertension in spontaneously hypertensive rats," JCI Insight. DOI: 10.1172/jci.insight.139789


More Articles About: Lab Report Hypertension and High Blood Pressure Basic Science and Laboratory Research Cardiovascular: Diseases & Conditions
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories teal persons body looks like a puzzle red heart top right of shoulder and chest getting placed into missing piece spot
Health Lab
Normothermic perfusion system extends life of organs waiting for transplant
A team of researchers have spent the past eight years looking at better ways to transport organs for donation, specifically hearts, to improve the number of organs that can be used for transplants. They found that using a modified normothermic perfusion system heart preservation was feasible for up to 24 hours.
yellow grey heart black background
Health Lab
Researchers create human aortic aneurysm model to advance disease understanding, treatment testing
Using human cells in an animal body, a team of researchers has developed a functional model of thoracic aortic aneurysm, creating opportunities for more effective understanding of disease development and treatments for the potentially fatal condition.
stethoscope
Health Lab
Too much iron can cause big problems for the immune system
A study builds on previous work that found depriving T cells of iron prevented cells from proliferating. The current study, published in PNAS, found that excess iron is just as problematic.
uti written on empty roll of toliet paper on a toliet paper holder with hot pink background
Health Lab
How E. coli get the power to cause urinary tract infections
Research published in PNAS examines how the bacteria Escherichia coli, or E. coli—responsible for most UTIs—is able to use host nutrients to reproduce at an extraordinarily rapid pace during infection despite the near sterile environment of fresh urine.
Health Lab
Protecting heart health during pregnancy
Experts discuss pregnancy and heart health.
Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.