Computational methods can lead to better vaccines faster

The review article proposes a strategy for effective and efficient COVID-19 vaccine design.

5:00 AM

Author | Kelly Malcom

covid cell lab note
Jacob Dwyer, Justine Ross, Michigan Medicine

Since the onset of the coronavirus pandemic in late 2019, more than 100 COVID-19 vaccines have entered or completed clinical trials, many of which have been authorized to be used around the world. However, fighting the ever-increasing threat posed by new SARS-CoV-2 variants calls for more efficient ways of developing safe and effective vaccines for COVID-19—and other emerging infectious diseases.

Anthony Huffman, Ph.D., of the Department of Computational Medicine and Bioinformatics, Yongqun Oliver He, Ph.D., and their colleagues at the University of Michigan Medical School recently published a review article in the journal Briefings in Bioinformatics that systematically surveys various methods in so-called rational COVID-19 vaccine design—which uses IT to determine potential vaccine targets—and proposes a strategy for effective and efficient COVID-19 vaccine design.

They classified three major stages in computational vaccine design:

  • Identification of experimentally verified gold standard protective antigens—the proteins that trigger the immune system to mount a defense—through literature mining

  • Rational vaccine design using reverse vaccinology, which uses the virus' RNA or DNA to identify proteins that could be targets for vaccines and structural vaccinology, which uses the atomic structure of a virus to inform potential vaccines—using the gold standard data

  • And further improvement of vaccine design through the surveillance and application of the approved vaccine successes and adverse event reports.

The team developed Protegen, a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. With the support of various machine learning methods, many RV and SV approaches have been developed and applied to COVID-19 vaccine design.

As an example of COVID-19 vaccine design, Edison Ong, Ph.D., and his teammates in the He laboratory have developed and applied RV and machine learning methods to successfully predict the SARS-CoV-2 Spike (S) protein as the best viral protein for COVID-19 vaccine development, which is aligned with the current usage of mRNA of the S protein in Pfizer and Moderna vaccines.

Furthermore, the team also unveiled several other viral proteins valuable for COVID-19 vaccine development and proposed a new cocktail vaccine recipe to possibly increase the efficacy and safety of next-generation COVID-19 vaccines.

Papers cited:

Anthony Huffman*, Edison Ong*, Junguk Hur, Adonis D'Mello, Hervé Tettelin, Yongqun He. COVID-19 Vaccine Design Using Reverse and Structural Vaccinology, Ontology-based Literature Mining, and Machine Learning. Briefings in Bioinformatics. DOI: 10.1093/bib/bbac190. PMID:35649389

Ong E, Wong M, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Frontiers in Immunology. DOI: 10.3389/fimmu.2020.0158

More Articles About: Industry DX Basic Science and Laboratory Research Covid-19 Community Health All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]


Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Featured News & Stories bottle cap red
Health Lab
Bipolar disorder and alcohol: It’s not as simple as 'self-medication'
People with bipolar disorder have a high risk of alcohol use issues, which have been seen as “self medication,” but a study shows that changes in drinking predict worse symptoms.
iv chemo bags
Health Lab
Drug-chemo combo increases cancer treatment efficacy
A study finds giving a fatty acid inhibitor alongside chemotherapy could improve the treatment efficacy for patients with brain metastases from triple negative breast cancer
white coats hanging and one swinging off hanger with purple haze over them and sunshine peeking through
Health Lab
Who feels ready for residency?
Helen Morgan, M.D., of Michigan Medicine, authored a study that surveyed obstetric and gynecology residents to determine who feels prepared for the transition from medical school to residency.
close up photo of yellow pills lined up on a bright blue matt
Health Lab
New drug candidate blocks resistance to cancer therapies
A team of researchers at the University of Michigan Health Rogel Cancer Center has designed a molecule that impairs signaling mediated by two key drivers of cancer therapy resistance.
two women, one older one younger, looking concerned listening to a provider across from them with back to camera
Health Lab
Many breast cancer survivors don't receive genetic testing, despite being eligible
As cancer treatment and survivorship care relies more on understanding the genetic make up of an individual’s tumor, a study from the University of Michigan Health Rogel Cancer Center finds that many breast cancer survivors who meet criteria for genetic counseling and testing are not receiving it.
rat in blue with yellow bright brain with blue abstract background
Health Lab
Diabetes and weight loss drugs could be enhanced, shows study in mice
A network of proteins found in the central nervous system could be harnessed to increase the effectiveness, and reduce the side effects, of diabetes and weight-loss drugs such as Ozempic and Mounjaro, according to research from the University of Michigan Life Sciences Institute.