Clinical Trial Offers Clues About Why Some Metastatic Prostate Cancers Don’t Respond to Anti-Androgen Therapy

Transcriptional profiling identifies a gene program active in metastatic prostate cancers that failed to respond to enzalutamide treatment.

3:00 PM

Author | Ian Demsky

MRI scanning procedure

Over the last decade, enzalutamide and similar drugs have led to significant tumor control and increased survival time for men who have metastatic prostate cancer that continues to grow despite treatments to reduce male hormone levels.

About a third of these advanced cancers, however, simply don't respond to drugs like enzalutamide — but why they don't respond has been unclear.

Now, a multi-institutional clinical trial is shedding new light on these non-responsive tumors — pointing toward unique molecular characteristics that might be targetable with new therapeutic approaches. The findings appear in the Proceedings of the National Academy of Sciences.

Many of the pathways active in the non-responsive cancers were linked to "stemness" — meaning the cancers were more primitive, flexible and adaptable, and more likely to develop resistance to treatment, the study found.

The trial was led by Joshi Alumkal, M.D. who leads the prostate and genitourinary medical oncology section at the University of Michigan Rogel Cancer Center. It was conducted at Alumkal's former institution, the Oregon Health & Science University Knight Cancer Institute, as well as at the University of California, San Francisco.

Researchers at the University of California, Los Angeles and other members of the Stand Up to Cancer Foundation/Prostate Cancer Foundation West Coast Prostate Cancer Dream Team were also key study contributors.

"The principal way we treat prostate cancer when it metastasizes is by using medical castration, or androgen deprivation therapy, that acts by interfering with male hormones, the fuel of prostate cancer," Alumkal says.

Drugs like enzalutamide work above and beyond medical castration by further cutting off the fuel supply and blocking the androgen receptor, which acts as an engine in prostate cancer cells.

Finding treatments to overcome enzalutamide resistance is a critical area of unmet medical need.
Joshi Alumkal, M.D.

"Unfortunately, a significant number of tumors don't respond to this treatment," Alumkal says. "Our trial demonstrates that this engine appeared to be firing less strongly in tumors from patients who did not respond to enzalutamide, suggesting that other, unknown factors were important."

The main goal of the phase 2 clinical trial was to compare the molecular blueprint of tumors that continued to grow following treatment with enzalutamide versus those that did not.

The trial recruited 36 men with metastatic castration-resistant prostate cancer. Biopsies from metastatic lesions were taken before the patients started daily treatment with enzalutamide.

A patient's cancer was considered to be responsive to the treatment if his prostate-specific antigen level, or PSA — an indicator of tumor activity — had fallen by at least 50% after 12 weeks.

Alumkal leads the prostate and genitourinary medical oncology section at the University of Michigan Rogel Cancer Center.

"This was a useful measurement because patients who did not see a 50% reduction in their PSA level had significantly shorter times before their cancers started growing again and lower overall survival," Alumkal notes.

DNA and RNA sequencing were performed on biopsy samples in order to identify genes and pathways whose activity corresponded with treatment resistance.

Ultimately, by examining the genes that were turned on and off differently between tumors from responsive or non-responsive cancers, Alumkal's team found an underlying pattern of low androgen receptor activity and high stemness in the non-responsive tumors.

MORE FROM THE LAB: Subscribe to our weekly newsletter

With this knowledge in hand, the trial now paves the way to investigate ways to disrupt this program, Alumkal says.

Specifically, Alumkal's team plans to test drugs in the laboratory that are currently in pre-clinical testing, in clinical testing or approved for use in other cancers that are predicted to block the stemness pathways implicated in their clinical trial. They plan to focus on tumor models that accurately reflect the biology of the patient tumors that didn't respond to enzalutamide.

"Finding treatments to overcome enzalutamide resistance is a critical area of unmet medical need," Alumkal adds.

"Our clinical trial provides new clues about why enzalutamide may not work well to control certain prostate cancers and provides a new roadmap to test drugs that we would not have otherwise thought to be relevant," he said. "Ultimately, we hope to identify drugs that can block this resistance program so we may develop new clinical trials that focus on patients whose tumors are inherently resistant to treatment with enzalutamide and drugs like it."

Additional authors on the paper include: Duanchen Sun, Eric Lu, Tomasz M. Beer, George V. Thomas, Emile Latour, Jeremy Cetnar, Shaadi Tabatabaei, Shawna Bailey, Claire B. Turina, Xiangnan Guan, Joshua Urrutia, Yiyi Chen, and Zheng Xia of Oregon Health & Sciences University; Rahul Aggarwal, David A. Quigley, Adam Foye, Jack F. Youngren, Felix Y. Feng, and Eric J. Small of UCSF; Charles J. Ryan of the Minnesota Masonic Cancer Center; Jiaoti Huang of Duke University; Alana S. Weinstein, Verena Friedl and Joshua M. Stuart of the University of California, Santa Cruz; Matthew Rettig, Robert E. Reiter and Owen Witte of UCLA; Daniel E. Spratt, of U-M; Martin Gleave of the University of British Columbia; Christopher P. Evans, of the University of California, Davis.

The research was supported by: Stand Up to Cancer-Prostate Cancer Foundation Prostate Dream Team Translational Cancer Research Grant (SU2C-AACR-DT0409), made possible by the Movember Foundation; the Pacific Northwest Prostate Cancer SPORE/NCI (P50 CA097186); the Michigan Prostate SPORE (P50 CA186786); the Wayne D. Kuni and Joan E. Kuni Foundation; a University of Michigan Rogel Cancer Center Rogel Scholar Award; and the Knight Cancer Institute Biostatistics Shared Resource at Oregon Health & Science University (P30 CA069533-16, P30 CA051008-16).

Disclosures: OHSU and UCSF received research funding from Astellas/Pfizer to conduct this trial. Alumkal has received consulting income from Janssen Biotech and Merck, and speaking fees from Astellas.

Paper cited: "Transcriptional profiling identifies an androgen receptor activity-low, stemness program associated with enzalutamide resistance," Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.1922207117

Like Podcasts? Add the Michigan Medicine News Break to your Alexa-enabled device or subscribe for updates on iTunesGoogle Play and Stitcher.

More Articles About: Lab Report Prostate Cancer Cancer Research Cancer: Cancer Types
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]


Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Featured News & Stories human silhouette groin zoom prostate
Health Lab
Study suggests commonly used prostate cancer treatment rewires engine of prostate tumors
Biopsies from the same patients before and after treatment reveal how a specific drug reprograms prostate tumors.
Doctors talking in office wearing white lab coats and masks.
Health Lab
Following the science from prostate cancer’s “on switch” to the Sjöberg Prize
Nearly 2 decades after a groundbreaking discovery, Arul Chinnaiyan wins a prestigious cancer research award.
cells under microscope #D render particles
Health Lab
Study demonstrates a novel approach to target enhancer-addicted cancers
A chromatin degrader stops transcription factors from driving cancer, which may serve as a potential treatment approach for over 90% of prostate cancers.
pink purple spongy tissue under microscope view
Health Lab
BET inhibitors show promise in overcoming lineage plasticity, a newly recognized form of resistance to prostate cancer drugs
Some prostate tumors transition from being glandular to more nerve-like in response to drugs that block the androgen receptor; a new preclinical study examines the underlying mechanisms and uncovers a promising countermeasure.
Doctors looking at sample
Health Lab
Newly Defined Cancer Driver is Fast, Furious and Loud
Researchers characterize three ways in which the gene FOXA1 mutates to trigger prostate cancer.
Health Lab
Study Explores Why Prostate Cancer Mortality is Higher in Black Men
The largest study of its kind finds societal factors and access to quality care, rather than genetics, underlies higher prostate cancer mortality rates for black men.