Amino Acid Connected to Fatty Liver Disease Could Provide Treatment Clues

Basic science research explores the effects of impaired glycine metabolism in nonalcoholic fatty liver disease and how to potentially use glycine-based treatment to help people with NAFLD.

8:48 AM

Author | Haley Otman

drawing of liver on lined paper in blue ink with a yellow badge with blue font on bottom right that says lab note

A new study further implicates low levels of the amino acid glycine in development of nonalcoholic fatty liver disease, or NAFLD. It also suggests addressing this might hold the key to a future treatment for the disease.

"We've uncovered a new metabolic pathway and potential novel treatment," says senior author Y. Eugene Chen, M.D., Ph.D., a professor of internal medicine, cardiac surgery, physiology, pharmacology and medicinal chemistry, from the Michigan Medicine Frankel Cardiovascular Center. His team collaborated with researchers from the University of Michigan, Wayne State University and Technion-Israel Institute of Technology.

Chen says there is a large need to expand treatment options for patients with NAFLD. Although it's the most common chronic liver disease, there are currently no approved drugs to treat it.

Lead author Oren Rom, Ph.D., R.D., a research fellow at the Michigan Medicine Frankel Cardiovascular Center, says the team focused on the poorly understood relationship between dysregulated amino acid metabolism and NAFLD.

"In particular, lower circulating glycine is consistently reported in patients with NAFLD and related comorbidities including diabetes, obesity and cardiovascular diseases," Rom says. "Our studies not only offer a metabolic explanation for defective glycine metabolism in NAFLD, but also uncover a potential glycine-based treatment." 

The researchers were able to improve body composition and several other measures in mouse models using a tripeptide known as DT-109.

"Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic fatty acid oxidation and glutathione synthesis, thus warranting clinical evaluation," the authors write.

Paper cited: "Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome," Science Translational Medicine. DOI: 10.1126/scitranslmed.aaz2841

Disclosure: Chen is an inventor of the compound DT-109. The University of Michigan has patented it and licensed it to Diapin Therapeutics. Chen and the university have an ownership interest in Diapin. The company is further developing the compound.


More Articles About: Lab Notes Nonalcoholic fatty liver disease (NAFLD) Basic Science and Laboratory Research Liver Conditions & Procedures
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories rat in blue with yellow bright brain with blue abstract background
Health Lab
Diabetes and weight loss drugs could be enhanced, shows study in mice
A network of proteins found in the central nervous system could be harnessed to increase the effectiveness, and reduce the side effects, of diabetes and weight-loss drugs such as Ozempic and Mounjaro, according to research from the University of Michigan Life Sciences Institute. 
measuring band around cartoon person waist with tie and red arrow pointing high baby blue background
Health Lab
How a gene for obesity affects the brain
How a gene for obesity affects the brain: The discovery could lead to new treatments for metabolic diseases with fewer side effects
Cancer cell microscopic, colored yellow
Health Lab
Researchers find common immune system mechanism between pregnancy, cancer
Researchers find common immune system mechanism between pregnancy, cancer
ear in the mix of photos in the background of people faded out
Health Lab
Creating supranormal hearing in mice
A study from Michigan's Kresge Hearing Research Institute produced supranormal hearing in mice, while also supporting a hypothesis on the cause of hidden hearing loss in people.
woman laying on floating cell maroon
Health Lab
Circadian rhythm drives the release of important immune cells
A study shows circadian rhythm drives the release of important immune cells in the body.
green background connecting to teal skull with brain inside both just outlines made out of felt
Health Lab
Can preventing inflammation improve heart and brain health?
Michigan Medicine research study aims to address inflammation’s role in diseases of the heart and brain.