Amino Acid Connected to Fatty Liver Disease Could Provide Treatment Clues

Basic science research explores the effects of impaired glycine metabolism in nonalcoholic fatty liver disease and how to potentially use glycine-based treatment to help people with NAFLD.

8:48 AM

Author | Haley Otman

drawing of liver on lined paper in blue ink with a yellow badge with blue font on bottom right that says lab note

A new study further implicates low levels of the amino acid glycine in development of nonalcoholic fatty liver disease, or NAFLD. It also suggests addressing this might hold the key to a future treatment for the disease.

"We've uncovered a new metabolic pathway and potential novel treatment," says senior author Y. Eugene Chen, M.D., Ph.D., a professor of internal medicine, cardiac surgery, physiology, pharmacology and medicinal chemistry, from the Michigan Medicine Frankel Cardiovascular Center. His team collaborated with researchers from the University of Michigan, Wayne State University and Technion-Israel Institute of Technology.

Chen says there is a large need to expand treatment options for patients with NAFLD. Although it's the most common chronic liver disease, there are currently no approved drugs to treat it.

Lead author Oren Rom, Ph.D., R.D., a research fellow at the Michigan Medicine Frankel Cardiovascular Center, says the team focused on the poorly understood relationship between dysregulated amino acid metabolism and NAFLD.

"In particular, lower circulating glycine is consistently reported in patients with NAFLD and related comorbidities including diabetes, obesity and cardiovascular diseases," Rom says. "Our studies not only offer a metabolic explanation for defective glycine metabolism in NAFLD, but also uncover a potential glycine-based treatment." 

The researchers were able to improve body composition and several other measures in mouse models using a tripeptide known as DT-109.

"Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic fatty acid oxidation and glutathione synthesis, thus warranting clinical evaluation," the authors write.

Paper cited: "Glycine-based treatment ameliorates NAFLD by modulating fatty acid oxidation, glutathione synthesis, and the gut microbiome," Science Translational Medicine. DOI: 10.1126/scitranslmed.aaz2841

Disclosure: Chen is an inventor of the compound DT-109. The University of Michigan has patented it and licensed it to Diapin Therapeutics. Chen and the university have an ownership interest in Diapin. The company is further developing the compound.


More Articles About: Lab Notes Nonalcoholic fatty liver disease (NAFLD) Basic Science and Laboratory Research Liver Conditions & Procedures
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.
Florescent image of a human ovarian follicle
Health Lab
Spatial atlas of the human ovary with cell-level resolution will bolster reproductive research
New map of the ovary provides a deeper understanding of how oocytes interact with the surrounding cells during the normal maturation process, and how the function of the follicles may break down in aging or fertility related diseases.
A CT scan of healthy lungs
Health Lab
Study reveals potential to reverse lung fibrosis using the body’s own healing technique
A recent U-M study uncovers a pathway utilized during normal wound healing that has the potential to reverse idiopathic pulmonary fibrosis.
Close up image of red blood cells moving through veins
Health Lab
Discovery reveals how this common stinky gas is processed to promote blood vessel growth
A new collaborative study, examined the interaction between three naturally occurring gases — nitric oxide (NO), oxygen, and H2S — during generation of new blood vessels, called angiogenesis.
Researcher in white coat focuses gaze on microbes pictured in a twisting tube illustrating the gut
Health Lab
Fiber, genes and the gut microbiome: Study reveals possible triggers for inflammatory bowel disease
A new U-M study finds a complex interplay between diet, genes, and the gut microbiota that could explain why IBD develops.
Enlargement of microscopic HIV virus cells
Health Lab
Researchers open new leads in anti-HIV drug development, using compound found in nature
Researchers open new leads in anti-HIV drug development, using a compound found in nature