AI model predicts death, complications for patients undergoing angioplasty, stents

It showed high levels of accuracy at predicting death, major bleeding events and the need for blood transfusion

5:00 AM

Author | Noah Fromson

doctor heart floating stethoscope
Getty Images

Listen to this article on Health Lab's podcast.

When a person has one or more blocked arteries, providers may choose to conduct a minimally invasive procedure known as percutaneous coronary intervention, or PCI. 

By inflating a balloon and potentially placing a stent, blood can flow more freely from the heart. 

Despite carrying less risk than open surgery, stenting and balloon angioplasty can result in complications like bleeding and kidney injury. 

Researchers at Michigan Medicine developed an AI-driven algorithm that accurately predicts death and complications after PCI — which could emerge as a tool for clinicians as they determine treatment for blocked heart arteries.

The results are published in European Heart Journal.

“The risks for patients undergoing percutaneous coronary intervention vary greatly depending on the individual patient, and both patients and clinicians have historically both over and underestimated the harms associated with PCI,” said lead David E. Hamilton, M.D., a cardiology-critical care fellow at Michigan Medicine. 

“Precise risk prediction is critical to treatment selection and the shared decision-making process. Our tool can recognize a wide array of outcomes after PCI and can be used by care providers and patients together to decide the best course of treatment.”

While other risk stratification tools have been created to identify risk after PCI, researcher say, many have modest accuracy and were made without involving a key party: patients. 

The Michigan Medicine team collected data from all adult patients who underwent PCI between April 2018 and the end of 2021 using the Blue Cross Blue Shield of Michigan Cardiovascular Consortium, or BMC2, registry. 

The consortium is comprised of hospitals across the state of Michigan that use data they collect to inform quality projects, and improve care and patient outcomes.

Researchers used that data — including more than 20 pre-procedural characteristics, such as age, blood pressure and total cholesterol — to create a risk prediction model with the machine learning software “XGBoost”.

The AI-driven model showed high levels of accuracy at predicting death, major bleeding events and the need for blood transfusion. It outperformed other models that used the same pre-procedural characteristics.

“We combined the predictive model with patient feedback from the PCI Patient Advisory Council to transform machine learning into this patient-centered, individualized risk prediction tool,” said senior author Hitinder Gurm, MBBS, interim chief medical officer at U-M Health.  

“In the age of widespread smartphones and electronic medical records, this computerized risk score could be integrated into electronic health systems  and made easy to use at the bedside. It would not only help relay complex information to the provider quickly, but it could also be used to enhance patient education on the risks related to PCI.”

The innovative technology has been harnessed into a computer and phone application to allow for free and widespread use.

Jeremy Albright Ph.D., Milan Seth, Devraj Sukul M.Sc., M.D., all of Michigan Medicine, Ian Painter Ph.D., of Washington State Department of Health and Foundations for Health Care Quality, Charles Maynard Ph.D., of Foundations for Health Care Quality and University of Washington, and Ravi S. Hira M.D., of University of Washington and Pulse Heart Institute and Multicare Health System. 

Support for BMC2 is provided by Blue Cross and Blue Shield of Michigan and Blue Care Network as part of the BCBSM Value Partnerships program. Although Blue Cross Blue Shield of Michigan and BMC2 work collaboratively, the opinions, beliefs and viewpoints expressed by the author do not necessarily reflect the opinions, beliefs, and viewpoints of BCBSM or any of its employees.

Paper cited: “Merging Machine Learning and Patient Preference: Patient-Centered Tool for Predicting Risk of Percutaneous Coronary Intervention,” European Heart Journal. DOI: 10.1093/eurheartj/ehad836

Sign up for Health Lab newsletters today. Get medical tips from top experts and learn about new scientific discoveries every week by subscribing to Health Lab’s two newsletters, Health & Wellness and Research & Innovation.

Sign up for the Health Lab Podcast: Add us on SpotifyApple Podcasts or wherever you get you listen to your favorite shows.


More Articles About: Interventional cardiology Heart Attack Treatment Heart Attack Risk Factors Cardiovascular: Diagnostics & Procedures Cardiovascular: Diseases & Conditions Cardiovascular: Treatment & Surgery Emerging Technologies Hospitals & Centers
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Related
kidneys blue yellow
Health Lab
Algorithm predicts females have higher risk for kidney damage after aneurysm repair
For an abdominal aortic aneurysm, female patients have a higher risk for kidney damage after endovascular repair, a Michigan Medicine study finds.
Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories blood vessel up close with red cells and yellow inside
Health Lab
Drug candidate successfully treats atherosclerosis, fatty liver disease in large mammals 
A compound that was previously found to treat severe fatty liver disease also reduces atherosclerosis, a primary driver of cardiovascular death, in non-human primates. The drug candidate was developed at the University of Michigan.
woman pregnant sitting holding tea and glasses on brown hair
Health Lab
Revolutionizing prenatal care: new guidelines to transform 100-year model
The American College of Obstetricians and Gynecologists, which collaborated with Michigan Medicine teams, is recommending significant changes to the way prenatal care is delivered in the United States, according to newly released clinical guidance.
two older people taking blood pressure over breakfast
Health Lab
To keep high risk patients out of hospitals, at-home monitoring shows promise
Remote patient monitoring at home was associated with a major reduction in hospitalization in high risk patients.
hand on pillow with smartwatch on wrist while person sleeps on pillow
Health Lab
Research reveals patient attitudes toward devices like smartwatches
A Michigan Medicine expert answers questions about how smartwatch technologies can help patients with sleep apnea.
doctor on mailbox answering questions with envelopes
Health Lab
Many older adults send their doctors portal messages, but who pays?
Patient portal messages between doctors and older adults are common, but can cost the patient money. A study shows that people with Medicaid coverage are billed as often as those with private insurance.
woman touching head talking to front desk person
Health Lab
Cognitive decline comes sooner for people with heart failure
There are over six million Americans with heart failure who are at greater risk of losing their cognitive abilities earlier in life, a study led by University of Michigan suggests.