What DNA Can Tell Us About Dog Evolution

Dog diversity unveiled by international DNA database

View  Transcript

The collection of close to 2,000 samples provides an unbiased view of canine genetics. 

Transcript

Host: 

Welcome to Health Lab, your destination for news and stories about the future of healthcare. Today: What DNA Can Tell Us About Dog Evolution. Dog diversity unveiled by international DNA database. The collection of close to 2,000 samples provides an unbiased view of canine genetics.

An international consortium of scientists, led by Jeff Kidd, Ph.D., of the University of Michigan, Jennifer R. S. Meadows of Uppsala University in Sweden, and Elaine A. Ostrander, Ph.D. of the NIH National Human Genome Research Institute, is using an unprecedentedly large database of canine DNA to take an unbiased look at how our furry friends evolved into the various breeds we know and love.

A paper, published in the journal Genome Biology, outlines what the Dog10K project discovered after sequencing the genomes of close to 2,000 samples from 321 different breed dogs, wild dogs, coyotes, and wolves, and comparing them to one reference sample—that of a German Shepherd named Mischka.

Analyzing more than 48 million pieces of genetic information, they discovered that each breed dog had around 3 million single nucleotide polymorphism differences.

These SNPs or “snips” are what account for most of the genetic variation among people and dogs alike.

They also found 26,000 deleted sequences that were present in the German Shepherd but not in the comparison breed and 14,000 that were in the compared breed but missing from Mischka’s DNA.

“We did an analysis to see how similar the dogs were to each other, and it ended up that we could divide them into around 25 major groups that pretty much match up with what people would have expected based on breed origin, the dogs’ type, size and coloration,” said Kidd.

Most of the varying genes, he added, had to do with morphology, confirming that the breed differences were driven by how the dogs look.

Relative to dogs, wolves had around 14% more variation. And wild village dogs—dogs that live amongst people in villages or cities but aren’t kept as pets—exhibited more genetic variation than breed dogs.

The data set, which was processed using the Great Lakes high-performing computing cluster at U of M, also revealed an unusual amount of retrogenes, a new gene that forms when RNA gets turned back into DNA and inserted back into the genome in a different spot.

The study found 926 retrogenes, the most famous of which, says Kidd, is a retrogene called FGF4, which results in the short leg phenotype seen in dachshunds and corgis.

“Dogs tend to have an increased amount of retrogenes which have resulted in mutations that were selected for, that perhaps people found cute and bred more of,” said Kidd.

His lab is attempting to figure out why retrogenes and insertions happen so frequently in dogs.

One of the benefits of the Dog10K consortium is its size, which will enable researchers at U-M and elsewhere to examine the genetic underpinnings of other canine characteristics and even common diseases in dogs, such as cancer.

For more on this story and others like it, visit michiganmedicine.org/health-lab. Health Lab is a part of the Michigan Medicine Podcast Network and is produced by the Michigan Medicine Department of Communication. You can subscribe to Health Lab wherever you listen to podcasts.


More Articles About: Healthcare NIH Dogs Michigan Medicine podcast
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast

Listen to more Health Lab podcasts - a part of the Michigan Medicine Podcast Network.

Related
dogs collage
Health Lab
Dog diversity unveiled by international DNA database
A new paper, published in the journal Genome Biology, outlines what the Dog10K project discovered after sequencing the genomes of close to 2,000 samples from 321 different breed dogs, wild dogs, coyotes, and wolves, and comparing them to one reference sample—that of a German Shepherd named Mischka.
Featured News & Stories Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
Period Poverty and the Need to Make Menstruation Products Easier to Access
A survey focused on how much people in their teens and early 20s know about periods and their experience and attitudes around “period poverty”.
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
Study Shows Medical Marijuana Use Decreased in States with Legalized Recreational Use
The number of patients using cannabis for medical purposes has increased more than 600 percent since 2016.
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
New research highlights preventable deaths for patients undergoing PCI procedures
Complications during procedures only contributed to death in about 20% of cases.
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
Managing Chronic Pain for Patients with Long COVID
Therapies for pain conditions like fibromyalgia provide clues for helping those with long COVID.
Health Lab Podcast in brackets with a background with a dark blue translucent layers over cells
Health Lab Podcast
Investigating How Dermal Injections Impact Aging Skin
A new study examines dermal injections and their impact on skin aging.
Minding Memory with a microphone and a shadow of a microphone on a blue background
Minding Memory
The Intersection of Artificial Intelligence & Alzheimer’s Disease and Related Dementias
In this episode, Matt and Donovan talk with Dr. Jason H. Moore, Director of the Center for Artificial Intelligence Research and Education (CAIRE) and Chair of the Department of Computational Biomedicine at Cedars-Sinai Medical Center. Jason discusses the coming impact of artificial intelligence on a spectrum of Alzheimer’s disease and related dementia (ADRD) issues. We discuss how tools such as AI-powered chatbots may improve quality of life for people living with dementia (and their caregivers) and how AI may contribute in the future to diagnosis and treatment.