Tumor-destroying soundwaves receive FDA approval for liver treatment in humans

A newly developed technique provides a non-invasive alternative to surgery, chemotherapy and radiation treatments for cancer

8:00 AM

Author | James Lynch

Histotripsy, which was developed at U-M, received FDA approval for liver treatment. Credit: Jeremy Little, Erica Bass

The United States Food and Drug Administration has approved the use of sound waves to break down tumors—a technique called histotripsy—in humans for liver treatment.

Pioneered at the University of Michigan, histotripsy offers a promising alternative to cancer treatments such as surgery, radiation and chemotherapy, which often have significant side effects.

Today, FDA officials awarded clearance to HistoSonics, a company co-founded in 2009 by U-M engineers and doctors for the use of histotripsy to destroy targeted liver tissue.

A clinical trial underway since 2021 at the U-M Rogel Cancer Center and other locations has treated patients with primary and metastatic liver tumors via histotripsy, demonstrating the technology’s ability to meet the testing’s primary effectiveness and safety targets.

"Histotripsy is an exciting new technology that, although it is in early stages of clinical use, may provide a non-invasive treatment option for patients with liver cancer. Hopefully it can be combined with systemic therapies for a synergistic therapeutic effect," said Mishal Mendiratta-Lala, M.D., an assistant professor of radiology with Michigan Medicine and principal investigator on the trial at U-M.

HistoSonics can now market and sell its histotripsy delivery platform, called Edison, to hospitals and medical professionals for use in liver treatments.

The company is headquartered in Minneapolis, while its advanced research and development is located in Ann Arbor. 

We want to leverage histotripsy’s immuno stimulation effects and hopefully combine them with immunotherapy or drug delivery. That will move histotripsy from a local therapy into one that can treat tumors globally all over the body and eventually into a cure.”

-- Zhen Xu, Ph.D.

Histotripsy works by using targeted ultrasound waves to form microbubbles within the tumor.

The forces created as those bubbles form and collapse cause the mass to break apart, killing tumor cells and leaving the debris to be cleaned up by the immune system.

What that could mean for patients is treatment without the physical toll of radiation or chemotherapy, fewer concerns with drug compatibility, far shorter recovery times than with surgery and less treatment discomfort. 

This is possible because it’s much easier to ensure that histotripsy treatments are hitting the tumor, and not healthy tissue, compared to radiation or invasive procedures.

Histotripsy relies on focusing acoustic waves of high energy ultrasound to concentrate the energy enough to form bubbles, and the Edison machine can make sure that region is confined to the tumor. In contrast, radiation affects everything in its path through the body. 

In addition, the histotripsy system has onboard diagnostic ultrasound imaging, the kind used to see babies in the womb. It is used to plan and observe the treatment in real time.

Physicians have a live view of the “bubble cloud” and how tissue is responding to the therapy.

woman pointing in lab with suit jacket on
Zhen Xu, Ph.D., is co-inventor of histotripsy. Credit: Erica Bass

And histotripsy’s potential benefits go beyond tumor destruction. In the last year, a pair of pre-clinical studies in rodents suggest that in the clean-up process, the immune system learns how to identify cancer cells as threats.

SEE ALSO: Ultrasound Technology Developed at U-M Now in Clinical Trials for Liver Cancer

This can enable the body to continue fighting the initial tumor and help activate a natural immune response to the cancer.

In the first study, even after destroying only 50% to 75% of the liver tumor volume by histotripsy, the rats' immune systems were able to clear away the rest, with no evidence of recurrence or metastases in more than 80% of animals.

Earlier this year, a second study showed that histotripsy breaks down the cancer cell wall's "cloak"—revealing proteins that the immune system can use to identify threats, known as antigens. These antigens are removed during surgery or destroyed during chemotherapy and radiation.

By instead destroying a cancer cell's outer wall, histotripsy lays bare the tumor antigens for the immune system to identify and use for targeted attacks on other cancer cells.

SEE ALSO: New Ultrasonic Therapy Obliterates Tissue Without Physical Contact

“We want to leverage histotripsy’s immuno stimulation effects and hopefully combine them with immunotherapy or drug delivery,” said Zhen Xu, Ph.D., a U-M professor of biomedical engineering, an inventor of the histotripsy approach and a co-founder of HistoSonics.

“That will move histotripsy from a local therapy into one that can treat tumors globally all over the body and eventually into a cure. In terms of the cancer treatment, that will be the next step, and I feel very excited about the potential.”

Disclosure: U-M retains a financial interest in HistoSonics, as do a number of researchers who were involved in this project and who helped develop the technology licensed to HistoSonics, including Xu, who is a company founder, stockholder and consultant. Each stands to benefit financially from the success of the platform. The company was formed with support from Innovation Partnerships, U-M’s central hub for research commercialization.


More Articles About: Cancer: Cancer Types Liver Cancer Cancer Treatment Cancer Research All Research Topics Emerging Technologies
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories stethoscope close up black and wood table
Health Lab
Affordable Care Act preventative services mandate key to transforming hepatitis C treatment
In an article researchers describe two potential futures: one in which 90% of hepatitis C cases in the United States are cured within five years and another in which the status quo of insufficient screening rates worsen in the absence of the ACA coverage mandate.
woman holding pole in bathroom with patient gown on
Health Lab
Older adults vary widely in preparing to “age in place”
Aging in place, or staying in your own home as you grow older, is key goal for many older adults, but a poll shows wide variation in what people over 65 are doing to prepare.
orange cells floating squiggly lines coming out of it with blurred blue and purple colors
Health Lab
Clinically deployed AI guidance for preventing C. difficile spread
AI guidance for clinicians aimed at reducing the spread of C.diff was deployed for the first time in a hospital setting, according to a University of Michigan-led study.
outline drawing of pancreas on beige screen with green orange yellow and pink
Health Lab
Avoiding recovery delays with hospitalized pancreatitis
Acute pancreatitis is among the most common gastrointestinal conditions requiring inpatient hospital care in the United States. Balancing the signaling of the interleukin-22 protein and interleukin-22 binding protein is crucial to recovery from acute and chronic pancreatitis.
algae green spread all over lake by forest edge from high view
Health Lab
Living near harmful algal blooms reduces life expectancy with ALS
Living close to cyanobacterial harmful algal blooms — which are present nationwide but are more common in coastal and Great Lake states — heightens the rate of dying from amyotrophic lateral sclerosis, or ALS, a study suggests.
Cancer Aware
Focal therapy for prostate cancer
When treating for localized prostate cancer, surgery and radiation are usually what people hear about. However, there are other treatments that could be options under a heading of focal therapy. Dr. Andrew Wood, a urologic oncologist with U-M Health Rogel Cancer Center’s Weiser Center for Prostate Cancer talks about these options and which patients could benefit from them.