P53 could be key to therapies for salivary gland cancer

Mouse models show that activating a non-mutated form of the gene could lead to developing therapies for this deadly form of cancer. 

11:11 AM

Author | Anna Megdell

cell slides under microscope
Photo provided by Jacques Nor.

Researchers at the University of Michigan Rogel Cancer Center and School of Dentistry found that certain drugs can change the fundamental makeup of cancer stem cells in mouse models of mucoepidermoid carcinoma – a lethal form of salivary gland cancer that currently has no treatment options. These results appeared in Clinical Cancer Research.

"We observed that when we used small molecule inhibitors of MDM2 for a short period of time, the population of cancer stem cells decreased quite a bit," said Jacques Nor, D.D.S, M.S,. Ph.D., Donald Kerr Professor of Dentistry and lead author of this study. The team initially thought that the cancer stem cells were being selectively killed by this drug, but the study revealed something more profound. Cancer stem cells represent the small number of cells in a tumor that fuel cancer's growth and spread.

"We found that the drug actually changes the fundamental nature of the cells to make them more vulnerable to other therapies and less able to start new tumors."

Like Podcasts? Add the Michigan Medicine News Break on Spotify, Apple Podcasts or anywhere you listen to podcasts.

Nor's team also observed that the incidence of relapse in mice treated with this drug was much lower than in the mice that were not treated.

Mucoepidermoid carcinoma is the most common malignant salivary gland cancer with very limited therapeutic options. Over 3,000 people die of the disease in the United States every year, and to date there is no FDA approved drug to treat it.

"There is currently no effective therapy for this cancer. Right now, these patients are typically treated with radical surgery and radiation, and that usually is insufficient. Patients die because of tumor relapse and tumor metastasis. We need a systemic drug. This is one of the first outcomes that is showing some positive signs in terms of tumor regression or inhibiting tumor relapse," Nor said. 

Nor has been studying for years drugs that activate P53 to see if this makes cancer cells more vulnerable to therapies. In 2019, he and his team published a study in Clinical Cancer Research that showed that small molecule inhibitors work well in mouse-models of MEC, but the team still hadn't figure out just how the drugs work. This new study moves the team one step closer to that understanding.

P53 is frequently mutated in most cancers but rarely in MEC, which made these small molecule inhibitors a good candidate to study. "This drug requires a non-mutated form of P53 to work," said Nor. "In mucoepidermoid carcinoma, this drug works well because P53 is not mutated." These results show that P53 is integral to MEC and suggest that therapeutic activation of p53 could present new treatment options for patients, possibilities that energize Nor and his team.

"The bottom line is we now have a drug that is in a clinical trial for patients with salivary gland cancer," he said.

Live your healthiest life: Get tips from top experts weekly. Subscribe to the Michigan Health blog newsletter

Headlines from the frontlines: The power of scientific discovery harnessed and delivered to your inbox every week. Subscribe to the Michigan Health Lab blog newsletter

Additional authors include Christie Rodriguez-RamirezZhaocheng ZhangKristy A Warner 1Alexandra E Herzog 1Andrea Mantesso 1Zhixiong ZhangEusik YoonShaomeng WangMax S Wicha

Funding was provided by the National Institute of Dental and Craniofacial Research (R01-DE021139), J.E. Nor; National Institute of Dental and Craniofacial Research (R01-DE23220) J.E. Nor; National Institute of Dental and Craniofacial Research (R01-DE021139S1) C.Rodriguez-Ramirez

Paper cited: "p53 Inhibits Bmi-1-driven Self-Renewal and Defines Salivary Gland Cancer Stemness," Clinical Cancer Research. DOI: 10.1158/1078-0432.CCR-22-1357


More Articles About: Lab Report Basic Science and Laboratory Research Cancer Research Oral Cancer Cancer: Cancer Types All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of health care news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories white pills falling out of orange pill bottle on a brown surface
Health Lab
Drug combination reduces breast cancer risk and improves metabolic health in rats
Researchers investigated the combined effects of bazedoxifene and conjugated estrogens in rat models as an alternative to tamoxifen.
RNA strand in purple on black background
Health Lab
A structural biologist weighs in on the tricky task of determining RNA’s shape
A recent article in Nature details why the quest to determine the shapes of RNA is difficult even for artificial intelligence.
mouse seeing three cookies with red dots out of brain
Health Lab
Researchers use nanoparticles to target glioblastoma in mice
University of Michigan researchers have created nanodiscs that can target cholesterol levels in GBM, starving the cancer cells and increasing survival rates of the treated mice.
doctors drawn looking at big oversized lungs
Health Lab
The most effective prevention method for complications post lung transplant
Out of the two most common treatments for chronic lung allograft dysfunction, a condition that can form after lung transplantation that has no treatment, a study from University of Michigan Health found that cyclosporine is not as effective as tacrolimus in preventing the condition.
blood vessel up close with red cells and yellow inside
Health Lab
Drug candidate successfully treats atherosclerosis, fatty liver disease in large mammals 
A compound that was previously found to treat severe fatty liver disease also reduces atherosclerosis, a primary driver of cardiovascular death, in non-human primates. The drug candidate was developed at the University of Michigan.
ultrasound scan on yellow background with red dot found in two images
Health Lab
Using ultrasound technology to quickly diagnose giant cell arteritis
Ultrasound technology at University of Michigan Health is helping diagnose giant cell arteritis in patients to begin potentially moving away from using invasive surgical biopsy methods.