How the western diet and gut bacteria can lead to scarring, vessel damage in scleroderma

The same metabolite is linked to cardiovascular and metabolic diseases.

5:00 AM

Author | Noah Fromson

small intestine drawing lab notes
Jacob Dwyer, Justine Ross, Michigan Medicine

A substance produced by gut microorganisms can lead to scarring and blood vessel damage in patients with scleroderma, a new study suggests. 

The intestinal microbiome regulates immunity, and its alterations play a role in autoimmune conditions such as scleroderma. However, until now, researchers did not know how alterations in the intestinal microbiome contribute to fibrosis and vascular damage characteristic of scleroderma. 

Researchers from Michigan Medicine investigated how a compound generated by the gut microbiome called trimethylamine N-oxide, or TMAO, could cause changes to cellular processes in scleroderma that trigger fibrosis, inflammation and vascular injury. 

TMAO is formed in the liver after the gut metabolizes nutrients such as choline and carnitine, which are abundant in the Western diet that is rich in meat. Results published in iScience reveal that the TMAO can reprogram cells to become scar-forming myofibroblasts, which lead to fibrosis and vascular damage. Moreover, the enzyme responsible for the formation of TMAO, called FMO3, is elevated in patients with scleroderma. 

"We have uncovered a novel mechanism linking the Western diet, the gut microbiome and some of the devastating effects of scleroderma," said John Varga, M.D., senior author of the paper and chief of the Division of Rheumatology at University of Michigan Health. "We will next examine whether drugs, or food products like virgin olive oil, can be used to block formation of this compound in the gut to treat fibrosis." 

The research team also included investigators from the Cleveland Clinic and Northwestern University

Additional authors include Seok-Jo Kim, Ph.D., Swarna Bale, Ph.D., Priyanka Verma,Ph.D., Qianqian Wan, M.D., Feiyang Ma, Ph.D., Johann E. Gudjonsson, M.D. Ph.D., , Paul W. Harms, Ph.D., Pei-Suen Tsou, Ph.D., Dinesh Khanna, MBBS, M.Sc., Lam C. Tsoi, Ph.D., all of Michigan Medicine, Stanley L. Hazen, M.D., Ph.D., Nilaksh Gupta, Ph.D., both of Cleveland Clinic, Karen J. Ho, M.D., Northwestern University Feinberg School of Medicine. 

Paper cited: "Gut microbe-derived metabolite trimethylamine N-oxide activates PERK to drive fibrogenic mesenchymal differentiation," iScience. DOI: 10.1016/j.isci.2022.104669


More Articles About: Lab Notes Basic Science and Laboratory Research Rheumatology All Research Topics
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories stethoscope lab note
Health Lab
Kids with rare autoimmune disease show these symptoms before blood clots 
Antiphospholipid syndrome is rare in adults and even less common among children. 
Scientific illustration of gliobastoma cells in the brain
Health Lab
Path forward for glioblastoma treatment
Experts in brain cancer outline current discoveries and offer a path of hope for glioblastoma treatment
Xray of a stem cell in a mouse brain.
Health Lab
Stem cells improve memory, reduce inflammation in Alzheimer’s mouse brains
Researchers improved memory and reduced neuroinflammation in a mouse model of Alzheimer’s Disease, suggesting another avenue for potential treatment.
Illustration of a microscope
Health Lab
Helpful enzymes vanish in many patients with antiphospholipid syndrome
Researchers recently revealed a new mechanism behind antiphospholipid syndrome that the investigators hope will eventually allow treatments to be targeted closer to the source of the problem.
Florescent image of a human ovarian follicle
Health Lab
Spatial atlas of the human ovary with cell-level resolution will bolster reproductive research
New map of the ovary provides a deeper understanding of how oocytes interact with the surrounding cells during the normal maturation process, and how the function of the follicles may break down in aging or fertility related diseases.
A CT scan of healthy lungs
Health Lab
Study reveals potential to reverse lung fibrosis using the body’s own healing technique
A recent U-M study uncovers a pathway utilized during normal wound healing that has the potential to reverse idiopathic pulmonary fibrosis.