Clearing cholesterol crystals with a new nanoparticle

Researchers developed an HDL-mimicking nanoparticle that modified heart disease-related plaques in preclinical research.

10:22 AM

Author | Haley Otman

stethoscope drawing in blue ink on lined paper with lab note writing on bottom right in yellow and navy
Michigan Medicine

An innovative nanoparticle could one day help address an untreatable risk factor for heart attacks and strokes: cholesterol crystals that trigger inflammation and evade medications.

"Although lipid-lowering drugs substantially prevent cardiovascular events in atherosclerosis, some patients still suffer from high residual risk because the existing cholesterol crystals in the atherosclerotic plaques activate immune cells and trigger inflammatory responses," said Y. Eugene Chen, M.D., Ph.D., a professor of internal medicine, cardiac surgery, physiology, pharmacology and medicinal chemistry, from the University of Michigan Health Frankel Cardiovascular Center, who was senior author on a new publication about the nanoparticle. "We presented a novel therapeutic strategy for atherosclerosis by modulating components in plaques and counteracting cholesterol crystal-induced inflammation."

The nanoparticle Chen's team generated, known as miNANO, for Michigan nanoparticle, removed the crystals from hardened arteries in mouse models of atherosclerosis, making the aortic plaques more stable in the process. With a diameter of just 10 nm, much smaller than what is visible to the human eye, miNANO is phospholipid based and behaves like HDL cholesterol, known as the good cholesterol, that clears arteries and prevents additional hardening. When the nanoparticle worked well in mouse models, the team then tested it in human aortic tissue with similar results.

Co-senior author Anna Schwendeman, Ph.D., the William I. Higuchi Collegiate Professor of Pharmacy, has extensive experience in discovery and clinical development of synthetic high-density lipoprotein nanomedicines. She said this newly generated nanoparticle shows strong biological function as a cholesterol acceptor and cholesterol crystal-dissolving agent, with significantly longer circulation half-life compared to synthetic HDL cholesterol.

Cholesterol crystals were first discovered in atherosclerotic plaques in the early 1900s and have been identified in many other diseases, including Niemann-Pick type C lysosomal storage disease, abdominal aortic aneurysm, kidney disease, and central nervous system anomalies, the authors said.

"Our studies not only suggest an effective pharmacological target to reduce atherosclerotic plaque burden, but also provide a new strategy for treating other diseases," said co-lead author Yanhong Guo, M.D., Ph.D., an assistant professor of internal medicine at U-M Health's Frankel Cardiovascular Center.

The research team has been collaborating for more than seven years on targeted therapy for cardiovascular diseases using nanoparticles and nanoparticle-mediated drug delivery to atheroma.

The human aortic tissue tested in this study was available thanks to U-M Health cardiac surgical patients who volunteered to participate in research.

The findings do not necessarily represent the position of the National Institutes of Health (HL134569, HL109916, HL136231, HL137214, HL138139, R21NS111191 and T32 GM07767), which funded the work along with the American Heart Association, Aikens Aortic Discovery grant from the U-M Health Frankel CVC, pilot grant from U-M Biointerfaces Institute and the Barbour Fellowship from U-M.

Paper cited: "Phospholipid nanoparticles: Therapeutic potentials against atherosclerosis via reducing cholesterol crystals and inhibiting inflammation." EBioMedicine a journal published by The Lancet, DOI: 10.1016/j.ebiom.2021.103725


More Articles About: Lab Notes Heart disease Drug Discovery Stroke Prevention Cardiovascular: Diseases & Conditions
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]

734-764-2220

Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Subscribe
Featured News & Stories man smiling sitting
Health Lab
A unique collaboration helps one patient better manage aortic disease
MI-AORTA is a donor-funded initiative that facilitates collaboration within the Frankel Cardiovascular Center, U-M Health and referring provider networks, creating value for the patients, families, and communities they serve and allows them to continue to pioneer advanced therapies for aortic diseases.
man standing
Health Lab
Beating the odds against chronic total occlusion
Learn about the latest advances in treatment for chronic total occlusion, a life-threatening condition that deprives the heart of oxygen. A team of cardiovascular surgeons perform advanced, minimally invasive surgery to help David Schneider get his life back on track.
lungs
Health Lab
Pulmonary embolism deaths, disparities high despite advancements in care
Despite these innovations, a Michigan Medicine study finds that the death rate for pulmonary embolism remains high and unchanged in recent years – more often killing men, Black patients and those from rural areas. The results are published in the Annals of the American Thoracic Society.
hospital staff emergency room patient rush
Health Lab
Nearly three-quarters of stroke patients requiring higher level of care wait over two hours for transfer
More than 70% of people experiencing a stroke who require a transfer wait longer than two hours to be transferred from the initial emergency department to hospitals with higher levels of care to receive time-sensitive care, a study finds.
cartoon of hospital workers and patient
Health Lab
Children who suffer cardiac arrest more likely to survive at ECMO capable hospitals
Children who experience cardiac arrest are one and a half times more likely to survive at a hospital capable of providing the life support system called ECMO, research suggests. But the reason behind better outcomes may have less to do with being saved by the heart and lung support machine itself and more to do with the care team structure at hospitals capable of ECM0, suggests the findings in Resuscitation.
Blurry Operating Room
Health Lab
High levels of satisfaction, and low levels of regret, after gender affirming mastectomy
Recent research from the University of Michigan finds that in addition to changing lives, most patients are highly satisfied with their decision to undergo surgery long-term.