Advancing Early Cancer Detection Methods

An interdepartmental team at the University of Michigan obtains a prestigious NIH grant that will support an advanced imaging strategy to improve methods for early cancer detection.

5:00 AM

Author | Jina Sawani

Cancer detection image


Worldwide, the incidence of cancer is steadily growing. Research has shown time and time again that this rise is often connected to the prevalence of obesity, coupled with an increasingly aging population, and society's regular consumption of a high-fat diet.

Over 80% of all human cancers originate from the epithelium of hollow organs and ducts. This thin layer of tissue is characterized by a simple, yet repetitive structure, that holds intense self-renewing capabilities and is an incredibly important site in the world of early cancer detection.

These notions intertwined to inspire Thomas Wang, M.D., Ph.D., H. Marvin Pollard Collegiate Professor of Endoscopy Research, Jason Spence, Ph.D., associate professor of internal medicine and cell and developmental biology and Kenn Oldham, Ph.D., associate professor of mechanical engineering, to apply for and obtain a $3 million grant from the National Institute of Biomedical Imaging and Bioengineering (NIBIB) branch of the National Institutes of Health (NIH).

"This grant will support a cutting-edge imaging strategy to advance improved methods for early cancer detection in the epithelium of human organs and ducts," says Wang.  "We're very excited about this initiative, which will show that some of the most capable tiny devices ever developed can be applied to make a real impact on cancer diagnosis and treatment," says Oldham.

Endoscopy, then and now

Research has shown a "miss rate" for identifying and removing colon polyps of greater than 20%, even while the early detection and prevention of colorectal cancer is regularly performed via screening colonoscopies.

Even further, flat and often depressed non-polypoid dysplasia make up 25% of all polyps and are often harder to detect via colonoscopy, while possessing higher risks for malignancy. However, improvements in image contrast when viewing these pre-malignant lesions may ultimately result in better detection and mortality rates, as well as better patient outcomes, overall.

 "Molecular imaging is a powerful tool for both detecting and guiding therapy for the early stages of cancer," says Wang. "It has the power to assess protein expression patterns on the surface of cells transforming into malignancy. This is really powerful stuff."

Together, we have pioneered an aggressive and dynamic leveraging mechanism to enable robust, large-angle scanning of light for extremely compact tools for use during endoscopy.
Thomas Wang, M.D., Ph.D.

Often, these molecular changes occur prior to any detectable cell abnormalities. Yet, by detecting non-polypoid dysplasia through wide-field imaging techniques in real-time, there are better chances for localizing these pre-cancerous lesions to help physicians remove them.

"The proposed wide-field imaging methods will serve as a supplement to improve conventional endoscopy methods for the early detection of colorectal cancer," says Wang. "Other technologies include narrow-band imaging, chromoendoscopy and autofluoresence imaging, which all have their own unique limitations."

LISTEN UP: Add the new Michigan Medicine News Break to your Alexa-enabled device, or subscribe to our daily updates on iTunesGoogle Play and Stitcher.

This is why narrow-band imaging, for example, which allows diseased tissue to appear darker in color than surrounding healthy mucosa, can't aid in the detection of dysplasia alone, and still requires white light endoscopy for guiding tissue biopsy. Chromoendoscopy utilizes non-specific exogenous dyes, such as indigo carmine, to enhance micro-anatomical changes in the mucosa.

However, like that imaging, chromoendoscopy relies on white light endoscopy to guide tissue biopsy and may miss flat lesions that don't present sufficient contrast from topographical changes of the epithelium alone. Auto-fluorescence imaging is highly sensitive to endogenous fluorescence from other molecules, like collagen. Debris and mucosal folds can cause shadows, inhibiting the accuracy of this approach.

"We know that in order for our approach to be effective, it must improve upon the current imaging capabilities," says Wang. "And through a collaborative approach, our initiative aims to accelerate the development of promising technologies to address early cancer detection and other problems in medicine through advancing integrative, quantitative and engineering methods."

MORE FROM THE LAB: Subscribe to our weekly newsletter

A trifold plan

The team, led by Wang, Oldham and Spence, will consist of engineers, chemists, biologists and physicians. The program will involve three key components:

  1. Oldham will use high-work density materials to develop tiny scanners using microsystems technology at U-M's Lurie Nanofabrication Facility to generate the images in real-time.

  2. Wang will develop a flexible, yet miniature, fiber-based imaging instrument that will be used as an accessory to standard medical endoscopes when performing in vivo imaging of the epithelium in hollow organs and ducts.

  3. Spence will implant human organoids in the colon of mice to verify instrument performance. These lesions are pre-malignant and have a flat appearance that make detection with endoscopes challenging. The organoids express cancer-associated genes at levels representative of what are seen in human patients.

"Together, we have pioneered an aggressive and dynamic leveraging mechanism to enable robust, large-angle scanning of light for extremely compact tools for use during endoscopy," says Wang. "This is very exciting."

More Articles About: Health Tech Emerging Technologies Cancer: Help, Diagnosis & Treatment Digestive (GI) Procedures & Surgery
Health Lab word mark overlaying blue cells
Health Lab

Explore a variety of healthcare news & stories by visiting the Health Lab home page for more articles.

Media Contact Public Relations

Department of Communication at Michigan Medicine

[email protected]


Stay Informed

Want top health & research news weekly? Sign up for Health Lab’s newsletters today!

Featured News & Stories smart watch on wrist
Health Lab
Clinical smart watch finds success at identifying atrial fibrillation
A Michigan Medicine research team developed a prescription wristwatch that continuously monitors the wearer’s heart rhythm and uses a unique algorithm to detect atrial fibrillation. The clinical-grade device, called the Verily Study Watch, proved very accurate at identifying atrial fibrillation in participants.
expert at stand hearing in suit
Health Lab
Keep telehealth alive and well, experts tell Senate subcommittee
Telehealth coverage by Medicare is scheduled to expire at the end of 2024; experts told Senators what they think should happen to preserve it.
man in scrubs sitting with scrub cap with headset on in clinical setting
Health Lab
Medical students use virtual reality to improve diabetes
A physician invents a creative approach for medical students in diabetic care.
cancer cell yellow blue
Health Lab
Potato starch supplements could be solution to bone marrow transplant complications
University of Michigan Health Rogel Cancer Center scientists have found a potential solution for preventing a common and dangerous complication in patients that receive stem cell transplants from a donor’s blood or bone marrow.  
two scientists next to eachother smiling at camera white coats
Health Lab
Free online tool expands anatomical science to the world
The tool, which is free to use, includes photography, videography and virtual reality learning resources from anatomical donors, along with comprehensive lab manuals and interactive files with click-to-reveal testing capabilities.
older person pouring pills into hand close up
Health Lab
Early findings suggest this cancer drug may be effective against advanced tumors caused by genetic mutations
Sparrow Health System, part of University of Michigan Health, experts release findings in a study of a cancer drug for patients with genetic mutations.